
Lecture 3.24 Functions of matrices. Matrices
with non-negative entries.

March 18, 2023

Functions of matrices. If p is a polynomial, and A a square matrix, then

p(A) = c0 + c1A+ . . .+ cdA
d

is defined, and this is a matrix of the same size as A.
One can then take limits of polynomials, when limits exist, for example,

we defined

eA =
∞∑

m=0

Am

m!
.

When A is diagonalizable, we have

A = BΛB−1,

where Λ = diag(λ1, . . . , λn) and B is the matrix whose columns are eigen-
vectors which make a basis of the whole space.

Then we have a closed formula for a function of A

p(A) = Bp(Λ)B−1, (1)

which is proved first for powers of A, then for polynomials, and then for func-
tions which are limits of polynomials. Notice that p(Λ) = diag(p(λ1), . . . , p(λn)),
so we have an explicit formula for p(A).

About functions of matrices, there are two important theorems:

Spectral Mapping Theorem. Eigenvalues of p(A) are p(λ), where λ are
eigenvalues of A. If v is an eigenvector of A with eigenvalue λ then the same
v is also an eigenvector of p(A) with eigenvalue p(λ).
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The second statement is evident: if Av = λv then Amv = λmv, so for
polynomials p we have p(A)v = p(λ)v and then we can pass to the limit.
The first part of the theorem includes the statement that p(A) has no other
eigenvalues except p(λ), where λ is an eigenvalue of A. This is easy to prove
for diagonalizable matrices. Non-diagonalizable (deficient) matrices will be
considered later.

Hamilton-Cayley Theorem. For a square matrix A and its characteristic
polynomial pA, we always have pA(A) = 0.

This theorem is true for all square matrices, and the proof for diagonal-
izable matrices is evident from (1): if p is the characteristic polynomial of A
the RHS of (1) is 0.

Remark. 1. I did not discuss the exact notion of limit when “limits
of polynomials” were mentioned. In all cases in this course polynomials
converge uniformly on each bounded set of the complex plane. For example,
the Taylor series of ez converges in this way. A more careful analysis shows
that one only needs uniform convergence in a neighborhood of the set of
eigenvalues. This is easy to see for diagonalizable matrices to apply the
formula

p(A) = Bp(Λ)B−1

one only needs to know p(λj), not the values of p at other points.
For example we can define sin of any square matrix by the series

sinA =
∞∑

m=0

(−1)mA2m+1/(2m+ 1)! = A− A3/6 + A5/120− . . . .

Exercise: show thatX(t) = sin(At) solves the second order matrix differential
equation

X ′′ = −A2X, and X(0) = 0, X ′(0) = I.

2. The set of all eigenvalues of a matrix (or of an operator) is called the
spectrum. This explains the names of the theorems in this lecture. Why such
a name? It has a long and very interesting story. I may tell some of it in one
of the next lectures. Meanwhile you may think what this word “spectrum”
means in physics.
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Matrices with non-negative entries

As we have seen before, eigenvalues contain the most important informa-
tion about a matrix, but on the other hand they may be difficult to find. So
it is important to be able to tell something about them without finding them
explicitly.

Today we consider matrices with non-negative entries. One motivation
for their study is a model of many natural and social phenomena which is
called a Finite Markov chain. Imagine a system consisting of many objects,
each object can be in one of the n states at every moment of time. For
example, the objects are American people, and the states are the states
United states. Every person resides in some definite state in a given year
(say, for tax purposes).

At every moment of time m the probability that an object is in state j is
denoted by aj, 1 ≤ j ≤ n. (Alternatively one can say that the aj is simply the
number of objects in state j divided by the total number of objects.) So the
distribution of our objects over states at the moment m of time is represented
by a vector a(m) of dimension n whose coordinates are aj(m), 1 ≤ j ≤ n.

In the next moment of time an object can move from state j to state i
with probability pi,j. (So that pjj is the probability that it will not move).

The state of the whole big system at time m is described by a vector a(m)
with coordinates aj(m). In the next moment of time the whole system will
be in the new state

a(m+ 1) = Pa(m), where P = (pij) (2)

is an n× n matrix of transition probabilities.
Read Example on p. 257. In this example, n = 2, objects are people in the

United States, and time is measured in years. The vector a(m) = (ym, zm)
T

is the distribution of people between “Outside of California” and “Inside
California”. The transition matrix is

P =

(
0.9 0.2
0.1 0.8

)
.

Equation (2) gives
a(m) = Pma(0).
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We find eigenvalues λ1 = 1 and λ2 = 0.7 and corresponding eigenvectors
v1 = (2, 1)T and v2 = (−1, 1)T . They are linearly independent, so we can
write

a(0) = c1v1 + c2v2,

Then
a(m) = c1λ

n
1v1 + c2λ

m
2 v2.

Notice what happens “in the long run”: since |λ2| < 1, λm
2 → 0 as m → ∞,

while λm
1 = 1 so

a(m) → c1v1, m → ∞,

and this does not depend on the original distribution a0.
If the coordinates of am are interpreted as probabilities, they should add

to 1, so c1 = 1/3.
We obtained a limit distribution of population between the “rest of the

US” and California; this distribution is 2 : 1, it is given by the coordinates
of the eigenvector v1 corresponding to the larger eigenvalue. This situation
generalizes to any finite Markov chain with any number of states.

Everything depends on the following fundamental theorem about matrices
with positive entries.

Perron’s Theorem. Let P be a square matrix with all entries pij > 0
(strictly!). Then the following statements hold:

(i) There is a positive eigenvalue λ1 which is greater than absolute value
of any other eigenvalue: λ1 > |λj|.

(ii) This eigenvalue λ1 has one dimensional eigenspace spanned by an
eigenvector v1 whose all coordinates are positive.

(iii) Eigenvectors corresponding to other eigenvalues λj ̸= λ1 cannot have
all their coordinates of the same sign (some coordinates are positive some
negative).

(iv) λ1 is a simple root of the characteristic equation.

This eigenvalue λ1 is called Perron’s eigenvalue, and the corresponding
eigenvector with positive coordinates is called a Perron eigenvector.

Returning to our finite Markov chain, we have a matrix P with non-
negative entries (probabilities are non-negative!) Our matrix P has the ad-
ditional property: all columns add to 1. Indeed, an object must move to
some state (including the state where it was), so sum of all probabilities of
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all possible moves must be 1, that is

n∑
i=1

pij = 1. (3)

Matrices with non-negative entries and property (3) are called stochastic.
Our vectors describing the states of the system also have non-negative entries
which add to 1 (the system must be in some state, so probabilities of all states
must add to 1).

Theorem. Let P be a stochastic matrix with all entries strictly positive.
Then the Perron eigenvalue λ1 = 1. If x is any non-zero vector with non-
negative coordinates then

lim
m→∞

Amx = cv1,

where v1 is a Perron eigenvector.

Proof. Let w = (1, 1, . . . , 1). Condition (3) can be conveniently written
as

wP = w, or P TwT = wT ,

so wT is an eigenvector of P T with all coordinates positive and eigenvalue 1.
Applying statement (iii) of Perron’s theorem to P T we conclude that Perron’s
eigenvalue of P T equals 1. But P and P T have the same characteristic
polynomial, so all their eigenvalues are the same. So Perron’s eigenvalue
of P is also 1. So all other eigenvalues of P must have the absolute value
less than 1. Suppose that P is diagonalizable. Then there is a basis of
eigenvectors v1, . . . ,vn, and we can expand x in the basis

x = c1v1 + . . .+ cnvn.

applying P m times we obtain

Pmx = c1v1 + c2λ
m
2 v2 + . . .+ cnλ

m
n vn.

since |λj| < λ1 = 1 for all j ≥ 2 we obtain the statement of the theorem.
The case of non-diagonalizable P will be dealt with later, when we study

non-diagonalizable matrices.

Conditions of this theorem are not satisfied by all finite Markov chains:
some entries of P can be zeros, and our theorem is not applicable in this
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case. Indeed, imagine a system whose states are divided into groups, and
transition between groups never happens (the corresponding probabilities
are zero). Then evidently it is not the case that every initial distribution will
eventually evolve to a single equilibrium distribution.

The question is how to exclude this case. A stochastic matrix is called
ergodic if some power PN of P has strictly positive entries. In terms of the
Markov chain this means that there is a positive probability of any transition
i → j in N steps. It is exactly to these matrices that our theorem generalizes.

Control question. Determine (by hand, without a computer) whether this
matrix is ergodic:

P =



1/2 0 1/2 0 0 0
1/2 1/2 0 0 0 0
0 0 1/2 0 0 1/4
0 1/2 0 1/2 1/4 1/4
0 0 0 1/2 1/2 0
0 0 0 0 1/4 1/2


.

If not ergodic, explain why. If ergodic, tell for which N will PN have all
entries positive.

Hint. Draw 6 dots on a sheet of paper, and label them with numbers 1 to
6. Think of the matrix P as representing a finite Markov chain. From each
dot draw arrows representing possible transitions (that is transitions with
positive probability). Thus an entry pi,j > 0 is represented by the arrow
from dot j to dot i. A brief inspection of the resulting picture allows you to
answer the question: an entry pNij of the matrix PN is positive if a transition
from j to i is possible in N steps.

Many other examples of applications of non-negative matrices are given
in section 5.3, pp. 259–262, and in the problems to this section.

Let me mention one more application, different from Markov chains.
Consider a chess tournament with n players. How can we rate the players

based on the results of the tournament? It is assumed, as this is usually
done, that each plays one game with each other. The usual way to record
the result of one game is +1 is you win, −1 is you loose, and 0 if it is a draw.
But we want a non-negative matrix, so let us award 3 for winning, 2 for the
draw and 1 for loosing a game. So the outcome can be represented as an
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n × n matrix A = (ai,j) where ai,j is the score of the player i in the game
with players j. Each entry is 1, 2 or 3.

The simplest way to rate the players is just to add their scores. We obtain
a vector, let us call it a1 whose i-th entry is the total score of player i. Then
one can write

a1 = Aa0, where a0 = (1, 1, . . . , 1)T .

But this is not a very good rating: winning over a strong player should give
you more credit that winning over a weak one. Since a1 nevertheless somehow
reflects the strength of a player, we can introduce a refined rating:

a2 = Aa1.

But why should one stop at this? We can define

am+1 = Aam, m = 0, 1, 2, 3, . . . .

So the “ultimate” rating will reasonably be some kind of limit of am as
m → ∞. Of course there is no reason to expect that the Perron eigenvalue
will be 1 in this case, since our matrix is not stochastic (it just has non-
negative entries). Since we are interested in a relative rating, multiplying a
vector am by a constant does not change anything. So to obtain the ultimate
rating we can consider the limit

lim
m→∞

am/λ
m
1 .

Perron’s theorem implies that this limit exists, and is equal to Perron’s eigen-
vector times a constant.

Thus the ultimate rating is done by Perron’s eigenvector.
Interestingly, this is how Google rates web sites. In the Google case, the

entries ai,j of matrix A are numbers of references on page i in pages j, and
the obtained rating determines which pages appear first when you search
something on the Google. For more detail on this you can look at the paper
of T. Moh, “25 billion dollars eigenvector” posted on the course site. The
proof of Perron’s theorem is somewhat technical, and I do not give it here.
You can read it in the post “Matrices with positive entries” or in the paper
of Moh.
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