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In the previous lectures we have seen that every symmetric matrix can
be brought to a diagonal form by a change of the basis. This change of the
basis is not unique. It turns out that in an important special case we can
bring two matrices to a diagonal form by the same change of the basis.

Theorem. Let A,M be two real symmetric matrices of the same size, and
let M be positive definite. Then there exists a non-singular matrix C such
that

CTMC = I, (1)

and
CTAC = Λ, (2)

where Λ is s real a diagonal matrix.

Proof. We have
M = RTR, (3)

with some non-singular matrix R. Then the matrix

(R−1)TAR−1

is symmetric, so there exists an orthogonal matrix B such that

B−1(R−1)TAR−1B = Λ. (4)

Set
C = R−1B. (5)
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Then CT = BT (R−1)T = B−1(R−1)T , where we used that B is orthogonal. So
(4) is the same as (2). To check (1) we use BT = B−1 and (R−1)T = (RT )−1

and obtain
CTMC = B−1(RT )−1RTRR−1B = I.

This proves Theorem 1.

Generalized eigenvalue problem

Next we will show that the entries λj of the diagonal matrix Λ in this
theorem are generalized eigenvalues of A with respect to M :

Ax = λMx, x 6= 0. (6)

They can be determined from the generalized characteristic equation

det(A− λM) = 0,

and the generalized eigenvectors are the columns of C from (1), (2).
We obtain from Theorem 1 and from its proof:

Corollary. Let A,M be symmetric matrices of the same size, and let M be
positive definite. Then all generalized eigenvalues (6) are real, and there is a
basis of the whole space which consists of generalized eigenvectors.

Proof. We refer to the proof of Theorem 1. Matrix (R−1)TAR−1 is sym-
metric, therefore all its eigenvalues are real and the eigenvectors form a basis.
These eigenvectors are columns of B. If vj is an eigenvector of (R−1)TAR−1

with eigenvalue λj then

(R−1)TAR−1vj = λjvj.

Multiplying on RT and setting vj = Ruj we obtain

Auj = λjR
TRuj = λjR

TRuj = λjMuj.

As R is non-singular, the uj form a basis of the space.
Since B = RC, this basis is nothing but the columns of C of Theorem 1.

So the simultaneous diagonalization of two matrices is not more difficult than
diagonalization of one matrix: solve the generalized characteristic equation
and find generalized eigenvectors.
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Notice that

uT
i Muj = uiR

TRuj = (Rui)
T (Ruj) = vTi vj =

{

0, i 6= j
1, i = j.

This means that uj , the eigenvectors of (6) are orthonormal with respect to
the dot product defined by

(x, y)M = xTMy,

and our matrix R transforms this dot product to the standard dot product:

(x, y)M = xTMy = xTRTRy = (Rx,Ry).

Geometric interpretation

I recall the geometric interpretation of a positive definite quadratic form.
It defines an ellipsoid:

{x : xTAx = 1}.
An ellipsoid can be rotated so that its principal axes become the coordinate
axes. An ellipsoid can be also stretched along the principal axes so that it
will become a sphere.

Now suppose we have two positive definite matrices, which define two
ellipsoids, say E1 and E2. We can perform a stretching along the axes of the
first ellipsoid E1 to make it into a sphere. Under this stretching, the second
ellipsoid will become some new ellipsoid E3. Then we can perform a rotation
which makes the principal axes of E3 coincide with coordinate axes, and this
rotation will not change the sphere.

This means that a composition of the stretching and the rotation trans-
forms E1 into a sphere and brings E2 to principal axes. This is the geometric
meaning of our theorem.

Applications to mechanics.

Let me recall the example from Lecture 3.31 of two masses connected by
springs and moving on an interval without friction. The system is described
by the differential equation

Mx′′ = −Kx, (7)

where

M =

(

m1 0
0 m2

)

and K =

(

k0 + k1 −k1
−k1 k1 + k2

)

.
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In this example, both matrices are positive definite, and this has a physical
meaning: M is positive definite because mass is always positive, and K is
positive definite because of the Hooke’s Law. To check the positivity of K
we use the NW minor criterion:

k0 + k1 > 0

and
detK = (k0 + k1)(k1 + k2)− k2

1
= k0k1 + k0k2 + k1k2 > 0.

Let us apply our theorem and find a non-singular matrix C such that

CTMC = I, CTKC = Λ.

Let us change the variable x = Cy. Introducing this to our equation (7) and
multiplying both sides on CT we obtain

CTMCy′′ = −CTKCy,

or
y′′ = −Λy.

So our equation decouples: it is a trivial system of scalar equations

y′′
1

= −λ1y1

y′′
2

= −λ2y2.

Since both λj are positive we obtain solutions

y1(t) = c1 cosω1t+ c2 sinω1t,

y2(t) = c3 cosω2t+ c4 sinω2t,

where ωj =
√

λj. So in the new coordinates, the motion is a superposi-
tion of two harmonic oscillations, whose frequencies are square roots of the
generalized eigenvalues.

This example is quite general: the matrices can be of any size, and the
system describes any kind of small oscillations in mechanics or electricity.

Example. Let us take

M =

(

1 0
0 2

)

and K =

(

2 −1
−1 2

)

.
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The characteristic equation

det(K − λM) =

∣

∣

∣

∣

∣

2− λ −1
−1 2− 2λ

∣

∣

∣

∣

∣

= 2λ2 − 6λ+ 3.

Its roots are

λ1 =
3−

√
3

2
, λ2 =

3 +
√
3

2
.

Notice that both roots are positive. To the first root corresponds an eigen-
vector v1 = (

√
3 − 1, 1)T and to the second root the eigenvector v2 =

(
√
3 + 1,−1)T . They describe the modes of oscillations. The eigenvectors

that we found are M -orthogonal:

vT
1
Mv = (

√
3− 1, 1)

(

1 0
0 2

)( √
3 + 1
−1

)

= 0.

Notice that the eigenvector corresponding to the smaller eigenvalue has no
sign change. This is a special case of quite general phenomenon: describing
such oscillations.

General mechanical systems

The following is just an example of further applications. It uses some
notions of mechanics, which are briefly explained. The goal is to show the
importance and generality of the previous example. No knowledge of mechan-
ics will be required on the exam.

Newton’s form of equations of motion ma = F is not always convenient,
especially when one deals with curvilinear coordinates. A generalization
was proposed by Lagrange. We consider a system of points whose position is
completely determined by some generalized coordinates q = (q1, . . . , qn). For
example, for one free point in space we have three coordinates (q1, q2, q3) =
(x1, x2, x3). Or q may be cylindrical, or spherical coordinates. For m free
points in space we need n = 3m coordinates. For a pendulum oscillating in
a vertical plane, we need one coordinate, for example the angle of deviation
of this pendulum from the vertical is a convenient coordinate.

As the system moves, coordinates are functions of time qj(t). Their
derivatives are called generalized velocities, q̇ = dq/dt. Derivatives with
respect to time are usually denoted by dots over letters in mechanics, to dis-
tinguish them from other derivatives. To obtain the true velocity vector
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of a point xk ∈ R3, one has to write xk = fk(q), rectangular coordinates as
functions of generalized coordinates, and differentiate:

ẋk =
n
∑

j=1

∂fk
∂qj

q̇j,

and the kinetic energy is

Tk = m‖ẋk‖2/2 =
∑

bk,i,j(q)q̇iq̇j, (8)

where bk,i,j are some functions of q. The total kinetic energy T of the system
is the sum of such expressions over all points xk, T =

∑

Tk. The important
fact is that

Kinetic energy is a positive definite quadratic form of generalized veloci-
ties, with coefficients depending on the generalized coordinates.

It is positive definite because the LHS of (8) is non-negative and the sum
of such expressions is positive, if at least one point actually moves.

Now we assume that vector of forces is the gradient of some function −U
of generalized coordinates:

F = −gradU = −
(

∂U

∂q1
, . . . ,

∂U

∂qn

)

. (9)

This function U is called the potential energy or simply the potential.
Following Lagrange’s recipe, we form the following function of generalized

coordinates and velocities:
L = T − U,

the difference between kinetic and potential energy. This function is called
the Lagrangian of the system. The equations of motion in the form of La-
grange are

d

dt

(

∂L

∂q̇j

)

=
∂L

∂qj
, 1 ≤ j ≤ n. (10)

The advantage of this formulation is that unlike for Newton’s equations ar-
bitrary curvilinear coordinate system can be used.

To see that these equations indeed generalize Newton’s equations, con-
sider a free point with coordinate x = (x1, x2, x3) and mass m moving in the
field of force with potential U . Then the kinetic energy is

T =
m

2

(

ẋ2

1
+ ẋ2

2
+ ẋ2

3

)

,
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and the Lagrangian is L = T − U . So equations (10) become

d

dt
(mẋj) = − ∂U

∂xj

= Fj(x1, x2, x3),

where Fj is the j-th component of the force.
Equations of motion are usually non-linear and cannot be solved.
One of the most common methods of dealing with them is linearization,

that is approximation of non-linear equations by linear ones. The simplest
case is the linearization near an equilibrium. An equilibrium is a point q0

such that the system in this state does not move. This means that equations
(10) are satisfied by q(t) ≡ q0.

Theorem 2. A point q0 is an equilibrium if and only if it is a critical point
of the potential energy U .

Proof. Let us write (10) as

d

dt

∂T

∂q̇j
=

∂T

∂qj
− ∂U

∂qj
.

If q(t) ≡ q0 is a solution, then q̇ = 0 and thus ∂T/∂q̇j = 0, and ∂T/∂qj = 0
for all j. So ∂U/∂qj = 0.

For the linearization we assume without loss of generality that q0 = 0,
and that both T and U are analytic functions of q and q̇. This means that
they have convergent series expansions

T (q, q̇) = T0 + T1(q, q̇) + T2(q, q̇) + . . . ,

where Tk are homogeneous polynomials of the variables qj, q̇j. Similar ex-
pansion holds for U . When we differentiate a homogeneous polynomial, its
degree decreases by 1, so to obtain linear equations in (10) both T and U
have to be of degree 2. As T is of degree 2 in the variables q̇, it must be
independent of q. In U , the terms of the first degree vanish by Theorem 2,
and the constant term disappears after differentiation.

Thus

The Lagrangian of the linearized systems at an equilibrium point 0 is
obtained by setting q = 0 in (8) and keeping only quadratic terms in U , in
other words, this Lagrangian has the form

L =
∑

i,j

mi,j q̇iq̇j −
∑

i,j

ai,jqiqj, (11)
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the difference of two quadratic forms with matrices M and A such that M is
positive definite.

To write the Lagrange equations with Lagrangian (11) we need the dif-
ferentiation formula

d

dx
(xTAx) = Ax.

Here d/dx is the column (d/dx1, . . . , d/dxn)
T . So the equation of motion

with Lagrangian (11) is
d

dt
M ẋ = −Ax. (12)

Now we can use the theorem on simultaneous diagonalization. We can apply
it directly to (11) to conclude that there are new coordinates y, x = Cy,
such that

L = ẏT ẏ − yTΛy,

so the equations of motion decouple and become

ÿj = −λjyj . (13)

Or alternatively we can apply the Corollary to the linear equation (12) and
find a basis uj of generalized eigenvectors. If yj are coordinates with respect
to this basis, we obtain (13) again. Stated in words this means that the
linearized equation of small oscillations always decouples and becomes (13)
after a change of coordinates.

Notice that if the matrix A is positive definite, then all λj > 0 and

solutions have the form yj(t) = cje
±iωj , where ωj =

√

λj the system is stable
and solutions oscillate with frequencies ωj.

Example. Double pendulum.

The configuration is shown in the figure. Let us choose the angles between
the two rods and the vertical direction as generalized coordinates q1, q2. An-
gles are measured from the downward vertical direction, counterclockwise, as
shown in the picture.
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m1

m2

q1

q2

ℓ1

ℓ2

Then the kinetic energy of the mass m1 is

T1 =
m1

2
ℓ2
1
q̇2
1
,

and the kinetic energy of the second mass is

T2 =
m2

2

(

ℓ2
1
q̇2
1
+ ℓ2

2
q̇2
2
+ 2ℓ1ℓ2 cos(q2 − q1)q̇1q̇2

)

.

Potential energy of the system is

U = −(m1 +m2)gℓ1 cos q1 −m2gℓ2 cos q2.

Thus T = T1 + T2 and

L = T − U =
m1 +m2

2
ℓ2
1
q̇2
1
+

m2

2
ℓ2
2
q̇2
2
+m2ℓ1ℓ2 cos(q2 − q1)q̇1q̇2

+ (m1 +m2)gℓ1 cos q1 +m2gℓ2 cos q2.

The equations of motion are non-linear and difficult to solve, so we linearize
them near the equilibrium (q1, q2) = (0, 0). (There are four equilibria in our
system). Linearization in this case means that we replace the cosine in the
kinetic energy by 1 and the cosines in potential according to the formula
cos x ≈ 1 − x2/2, because we want to keep only second degree terms in the
Lagrangian. The constant term in Potential energy can be omitted.

Thus the Lagrangian of the linearized system is

L∗ =
m1 +m2

2
ℓ2
1
q̇2
1
+

m2

2
ℓ2
2
q̇2
2
+m2ℓ1ℓ2q̇1q̇2

− m1 +m2

2
gℓ1q

2

1
− m2

2
gℓ2q

2

2
.
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and the linearized equation of motion is

(

(m1 +m2)ℓ
2

1
m2ℓ1ℓ2

m2ℓ1ℓ2 m2ℓ
2

2

)(

q̈1
q̈2

)

= −
(

(m1 +m2)gℓ1 0
0 m2gℓ2

)(

q1
q2

)

,

which we write as
Mq̈ = −Aq.

It is easy to check directly that both M and A are positive definite. Notice
that M is not diagonal in this example.
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