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Let A and M be symmetric matrices, with M positive definite. Then
the corresponding quadratic forms can be simultaneously reduced to linear
combinations of squares, which means that there exists a non-singular matrix
C such that

CTMC = I, CTAC = Λ = diag(λ1, . . . , λn), (1)

where λj are generalized eigenvalues solving the generalized characteristic
equation det(A− λM) = 0.

All eigenvalues are real, and we label them in the non-decreasing order,
each eigenvalue is repeated according to its multiplicity so that:

λ1 ≤ λ2 . . . ,≤ λn.

The purpose of the following is to give formulas of the generalized eigen-
values which do not depend on any choice of coordinates.

Let us introduce the function, called the Rayleigh ratio, which is defined
for x 6= 0:

R(x) =
xTAx

xTMx
, x 6= 0.

Our goal is to study its extremal properties. Notice that R is homogeneous,
R(kx) = R(x) for any real k. It follows that it has a maximum and a
minimum.

Consider the transformation x = Cy, where C is the non-singular matrix
from (1). We have y = C−1x, so the coordinates yk of y are yk = uT

k x, where
uT
k is the k-th row of C−1. We also denote by vk the k-th column of C, so

that uT
i vj = δi,j.
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We have in view of (1) with x = Cy:

R(x) =
yTΛy

y2
=

λ1y
2
1 + . . .+ λny

2
n

y21 + . . .+ y2n
. (2)

From this representation, it is immediately evident that

min
x

R(x) = λ1 and max
x

R(x) = λn.

So we obtained representations of λ1 and λn which are completely indepen-
dent of any coordinates.

This representation permits easy estimates of eigenvalues.

Example let A = (ai,j) be a symmetric matrix whose smallest eigenvalue
is λ1 and the largest eigenvalue λn. Computing the Rayleigh ratio on the
vector x = (1, 1, . . . , 1)T we obtain

xTAx =
∑

i,j

ai,j, xTx = n, R(x) =
1

n

∑

i,j

ai,j,

so the Rayleigh ratio is simply the arithmetic average of all entries of A, and
we obtain

λ1 ≤
1

n

∑

i,j

ai,j ≤ λn.

Using other vectors, we obtain infinitely many inequalities which give explicit
estimates of λ1 from above and λn from below.

To obtain a similar representation for the rest of λj, we consider a mini-
mization problem with restrictions. First of all

min
uT

1
x=0

R(x) = min
y1=0

R(x) = min
λ2y

2
2 + . . .+ λny

2
n

y22 + . . .+ y2n
= λ2. (3)

This is not very useful, because the knowledge of u1 is required. So take any
vector a and consider the restriction aTx = 0. We will show that minimum
with this restriction is between λ1 and λ2. That it is at least λ1 is clear
because λ1 is the unrestricted minimum. To show that it is at most λ2,
let us choose a vector x = c1v1 + c2v2 6= 0, which satisfies the restriction
aTx = 0. The restriction gives one homogeneous linear equation on two
unknowns c1, c2, namely

c1a
Tv1 + c2a

Tv2 = 0
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therefore such a non-zero solution (c1, c2) exists. For this vector x,

R(x) =
λ1c

2
1 + λ2c

2
2

c21 + c22
≤ λ2,

and x satisfies the restriction. So the restricted minimum is between λ1 and
λ2. Combined with (3) this can be stated as:

max
a

min
aT x=0

R(x) = λ2.

This gives a formula for λ2 as a solution of a maximin problem. Completely
similar reasoning gives the following:

Maximin Principle.

λk = max
a1,...,ak−1

(

min
aT
1
x=0,...,aT

k−1
x=0

R(x)

)

.

Proof. When a1 = u1, . . . , ak−1 = uk−1 we have

min
uT

1
x=0,...,uT

k−1
x=0

R(x) = min
λky

2
k + . . .+ λny

2
n

y2k + . . .+ y2n
= λk.

Now consider any restriction

aT1 x = . . . aTk−1x = 0,

and choose a non-zero vector

x = y1v1 + . . .+ ykvk

which satisfies the restriction. This is possible, becauses the restrictions are
k − 1 equations and we have k unknowns, so there is always a non-zero
solution. For this vector

R(x) =
λ1y

2
1 + . . .+ λky

2
k

y21 + . . .+ y2k
≤ λk.

This completes the proof.

Similarly we could begin with maximizing R(x) instead of minimizing.
Then completely similar arguments give the
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Minimax Principle

λk = min
a1,...,an−k

(

max
aT
1
x=0,...,aT

n−k
x=0

R(x)

)

.

Applications.

1. Let us say that A ≥ B if xTAx ≥ xTBx for all x 6= 0. This is equivalent
to saying that A−B is positive semi-definite. Indeed

xTAx− xTBx = xT (A− B)x.

Now consider four matrices A,M,A′,M ′ all symmetric, and M,M ′ positive
definite. Let λj be the generalized eigenvalues solving det(A− λM) = 0 and
λ′

j the generalized eigenvalues solving det(A′ − λ′M ′) = 0.

Theorem 1. If A ≥ A′ and M ≤ M ′ then λj ≥ λ′

j, for all j.

Indeed, we have R(x) ≥ R′(x) for the Rayleigh ratios, so all maxima and
minima involving R are at least those involving R′.

This has a nice and useful physical interpretation. Recall the equation
of small oscillation of a mechanical system. It is a second order differential
equation

My′′ +Ky = 0,

where M (mass) and K (stiffness) are symmetric matrices, and M > 0. So

we obtain the following principle:

Increasing stiffness and/or decreasing mass of the system results in in-
creasing all frequencies of proper oscillations.

2. Suppose that the matrix A′ is obtained from a symmetric matrix A by
deleting some columns and rows with the same numbers. For example, A′

can be a NW submatrix of A. How are their eigenvalues related? Suppose
that A is of size n×n and A′ is of size m×m, m < n. Let λ′

1 ≤ λ′

2 ≤ . . . ≤ λ′

m

be eigenvalues of A′ and λ1 ≤ . . . ≤ λn be eigenvalues of A.

Theorem 2. We have

λk ≤ λ′

k ≤ λk+n−m, 1 ≤ k ≤ m. (4)
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In particular, when n−m = 1 we obtain

λ1 ≤ λ′

1 ≤ λ2 ≤ λ′

2 ≤ . . . ≤ λ′

n−1 ≤ λn.

This is called the interlacing property: the eigenvalues of the reduced matrix
interlace with those of the original one.

Example. What can we say about eigenvalues of the following n × n

matrix:
















0 0 . . . 0 1
0 0 . . . 0 2
0 0 . . . 0 3
. . . . . . . . . . . . . . .

1 2 . . . n− 1 n

















?

Let us cross out the last column and the last row. If the eigenvalues of the
original matrix are λ1, . . . , λn and the eigenvaluesr of the new matrix are
λ′

1, . . . , λ
′

n−1, then they must be interlaced:

λ1 ≤ λ′

1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λ′

n−1 ≤ λn.

But λ′

j = 0 for all j, so we conclude that the original matrix has λ1 ≤ 0 ≤ λn

and zero is an eigenvalue of multiplicity at least n− 2.
Let us test this for n = 4. Expanding the determinant along the first row,

we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 0 0 1
0 −λ 0 2
0 0 −λ 3
1 2 3 4− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −λ

∣

∣

∣

∣

∣

∣

∣

−λ 0 2
0 −λ 3
2 3 4− λ

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

0 −λ 0
0 0 −λ

1 2 3

∣

∣

∣

∣

∣

∣

∣

= λ4 − 4λ3 − 14λ.

So the eigenvalues are λ4,1 = 2±
√
18, of different signs, and λ2 = λ3 = 0, as

predicted.
Now let us cross out

Proof of Theorem 2. To prove λ′

k ≥ λk we use Maximin Principle. λ′

k can
be written as maximum over k−1 restraints of minima R(x) under these k−1
restrains and the restraints xm+1 = . . . = xn = 0. Removing the last n −m

restraints decreases the minimum of R(x), and maximum over restraints of
minima of R(x) under k − 1 restraints is λk.
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To prove λ′

k ≤ λk+n−m we use Maximin Principle again. For x ∈ Rn

we denote by x′ ∈ Rm the vector consisting of the first m coordinates of x.
Then

λ′

k = max
restrictions

(

min
k−1 restrictions

R′(x′)
)

But minimum of R′(x) under k − 1 restrictions equals to the minimum of
R(x) with the same restrictions plus n − m restrictions of the form xj =
0 m+ 1 ≤ j ≤ n. So the total number of restrictions is k − 1 + n−m. This
does not exceed maximum of these minima over all possible k − 1 + n −m

restrictions and this is λk+n−m.

Instead of considering submatrices, we can impose arbitrary linear restric-
tions that is a restriction of the quadratic form on a subspace of dimension
m. The result will be the same.

Example. Watch the following short movies on YouTube:
https://www.youtube.com/watch?v=LrAZq8uxB3c&t=26s
https://www.youtube.com/watch?v=i2QyehtQTFQ
What’s going on? A railway worker walks along the train with a long

hummer, and kicks the axles of railway carriages. His job is called “wheel
tapper”. He checks for the cracks in the following way: the sound produced
by a cracked axle differs in pitch from the sound of a normal axle. Why does
this happen, and in how exactly it differs? Consider a model of the solid as
a set of moleculas connected by rods and/or springs. A crack means that
some rods or springs are removed. The pitch of the sound is determined by
the lowest frequency of the oscillating solid, that is the square root of the
smallest eigenvalue. When we remove springs or rods, this smallest eigenval-
ues decreases. So the pitch of a cracked axle is lower than the pitch of an
uncracked one.

I also recommend the following movie which demontrates the modes of
oscullations. Modes are essentially the different eigenvectors, corresponding
to different eigenvalues.

https://www.youtube.com/watch?time continue=2&v=9N1aYy8Q9jo

3. Suppose that a form xTA′x is obtained from xTAx by adding r squares
of linearly independent linear forms:

xTA′x = xTAx+
r
∑

j=1

(Lj(x))
2. (5)
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How are the eigenvalues of A and A′ related? Let λj be eigenvalues of A and
λ′

j eigenvalues of A
′, both sequences are ordered so that they increase.

Theorem 3. If the forms A and A′ are related as in (5) then we have

λ′

k ≥ λk, 1 ≤ k ≤ n

and
λ′

k ≤ λk+r, 1 ≤ k ≤ n− r.

Proof. The first inequality is clear from either Maximin or from Minimax
Principle, because we have R′ ≥ R, so whatever maxima or minima one
takes, this inequality will be preserved.

The second inequality is derived from the Maximin Principle. λk+r is the
maximum over restrictions of minima of R(x) with k + r − 1 restrictions. It
will decrease if we take maximum not over all possible restrictions but fix r

of them to be Lj(x) = 0. But then this is the same as the minimum of R′(x)
with k − 1 restrictions and this is λ′

k.
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