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The problem addressed here is how can one simplify a linear transforma-
tion by choosing two different bases, one in the domain and one in the image.
Every linear transformation from Rn to Rm can be represented by an m× n
matrix in the standard basis. So we just consider the transformation

x 7→ Ax

for some arbitrary matrix A.

Theorem. For every A, there exists an orthonormal basis v1, . . . , vn and an

orthonormal basis u1, . . . , um such that

Avj = σjuj , 1 ≤ j ≤ n, (1)

where σj ≥ 0.

Remark. In the case that m < n this should be understood as σj = 0 for
j > m.

Proof. Consider the matrix ATA (it is n× n). This matrix is symmetric
and positive semidefinite. Indeed

(ATA)T = ATA,

and
xTATAx = (Ax)T (Ax) ≥ 0,

by the positivity of the dot product.
By the Spectral Theorem for symmetric matrices, there is an orthonormal

basis v1, . . . , vn made of eigenvectors of ATA. We take it as a basis in the
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domain of A, and we order this basis so that eigenvalues are listed in non-
increasing order. Since ATA is positive semidefinite, eigenvalues are non-
negative.

Now we prove that vectors Avi are orthogonal:

(Avi)
TAvj = vTi A

TAvj = λjv
T
i vj.

This is zero when i 6= j. To convert Avj into an orthonormal system we have
to divide these vectors by square roots of λj. Recall that λj are non-negative,
and denote

σj =
√

λj ≥ 0.

Then we set uj = Avj/σj when σj 6= 0, and obtain (1). If m is greater than
the number of non-zero σj, complete u1, . . . , un to an orthonormal basis. So
we proved the theorem.

Now let us state it in terms of matrix factorization. Let V = [v1, . . . , vn]
be the matrix whose columns are vj. Let U = [u1, . . . , um] be the matrix
with columns uj. These matrices are orthogonal:

V T = V −1, UT = U−1.

Multiplying V by A from the left, we obtain using (1):

AV = A[v1, . . . , vn] = [σ1u1, . . . , σnun] = UΣ,

where Σ = diag(σ1, . . . , σn). In other words,

A = UΣV T . (2)

The numbers σj are called the singular values of the matrix A, and the
formula (2) is called the singular value decomposition, abbreviated as SVD.
In the case that m > n, we have to extend Σ by adding zeros in the bottom
so that it becomes an m×m matrix, and so that (2) makes sense.

The geometric meaning of SVD is the following. If we have any linear
transformation Rn → Rm, then we can make orthogonal changes of co-
ordinates in Rn and Rm (two different new coordinate systems!) so that
in these new coordinates the matrix of our transformation is diagonal with
non-negative entries. In other words, in appropriate coordinate systems, any
linear transformation is just stretching by different amounts along each co-
ordinate.
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This is in great contrast with the Jordan normal form of an operator:
for operators (acting from a space to the same space, only the same coordi-
nate change in the domain and in the image was allowed. While for linear
transformations separate different changes are allowed. For this reason SD
is simpler that the Jordan form.

To find the SVD for a given matrix, just find eigenvalues and eigenvectors
of ATA. Order the eigenvalues and eigenvectors so that eigenvalues decrease.
Put eigenvectors vj as columns of V , and vectors Avj/σj as columns of U ,
where σj are positive square roots of positive λj. If m > n add some columns
to U using Gram–Schmidt process. The diagonal entries of Σ are positive
square roots of eigenvalues of ATA. Don’t forget to add m− n zeros rows if
m > n, so that Σ has the correct size.

Remark. The columns of U are eigenvectors of AAT : indeed, multiplying
(1) from the left on AAT we obtain

AATAvj = σjAA
Tuj.

As ATAvj = λjvj, we have

Aλjvj = σAATuj,

and using (1) again
λjσjuj = σjAA

Tuj.

Dividing on σj we conclude that uj are eigenvectors of AA
T with eigenvalues

λj.

So ATA and AAT always have the same eigenvalues with the same mul-

tiplicities, except for the zero eigenvalue.

You can use this fact to save efforts when finding the SVD for a rectangu-
lar matrix: compute the eigenvalues of the smaller of the two matrices AAT

and ATA.

Polar decompositions. We give several applications.
1. Every real square matrix A can be written as a product

A = SO,

where S is symmetric, positive semidefinite, and O is orthogonal. Indeed, we
have

A = UΣV T = (UΣU−1)(UV T ),
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so we can define S = UΣU−1 = UΣUT which is symmetric and positive
semidefinite, and O = UV T which is orthogonal.

Similarly we can write every real square matrix as

A = UΣV T = (UV −1)(V ΣV T ),

where UV −1 is orthogonal and V ΣV T is symmetric and positive semidefinite.
These two representations of arbitrary real matrix generalize the polar

representation of a complex number.

2. Same arguments work for complex matrices, using Hermitian transpose
instead of the usual one. We obtain that every complex matrix can we written
in the form

A = UΣV ∗,

where U and V are unitary and Σ diagonal, with non-negative entries. In
the polar decompositions the matrix S will be symmetric positive definite
and O will be unitary.

Example 1.

A =

(

−1 1 0
0 −1 1

)

.

We compute AAT , because it is of smaller size:

AAT =

(

2 −1
−1 2

)

.

The characteristic polynomial is

λ2 − 4λ+ 3,

and eigenvalues are λ1 = 3,≥ λ2 = 1. It is important to order them, so that
λ1 is bigger. Then

ATA =







1 −1 0
−1 2 −1
0 −1 1





 .

It must have the same eigenvalues as AAT , except zero eigenvalue. We find
eigenvectors of ATA:

For λ1 = 3, we obtain v1 = (1,−2, 1)T .
For λ2 = 1, we obtain v2 = (−1, 0, 1)T .
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Since AAT is 3× 3, there is the third eigenvalue, and it must be 0.
For λ3 = 0 we find v3 = (1, 1, 1)T .
We also need eigenvectors of AAT . They can be found in two ways: a)

directly, since we know the eigenvalues, or b) as the images of vj under A.
Since it is easier to work with 2× 2 matrices, rather than 3× 3 we find them
directly:

For λ1 = 3, we obtain u1 = (−1, 1)T .
For λ2 = 1, we find u2 = (1, 1)T .
All these eigenvectors ui and vj still have to be normalized. The final

answer is

U =
1√
2

(

−1 1
1 1

)

,

V T =







1/
√
6 −2/

√
6 1/

√
6

−1/
√
2 0 1/

√
2

1/
√
3 1/

√
3 1/

√
3





 ,

the rows of V T are the normalized vectors vj.

Σ =

( √
3 0 0
0 1 0

)

,

ad you may check that
A = UΣV T .

Example 2.

A =







−1
2
2





 .

The smaller matrix of AAT and ATA is

ATA = (9).

Its only eigenvalue is 9, an eigenvector is v1 = (1) and the only singular value
is σ1 =

√
9 = 3. So

u1 = Av1/σ1 =







−1/3
2/3
2/3





 .

We have ‖u1‖ = 1.
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Since the matrix U must be 3×3 we need to complete the vector u1 to an
orthonormal basis of R3, in other words, to find u2,u3 which are orthogonal
to u1 and to each other, and have norm 1.

Orthogonality to u1 means that their coordinates must satisfy

−x1 + 2x2 + 2x3 = 0.

This has linearly independent solutions u∗

1
= (2, 0, 1)T and (2, 1, 0)T . They

are not orthogonal, so we orthogonalize them, replacing the second vector by

u∗

3
= (2, 1, 0)T − c(2.0.1)T ,

where c is found from the condition that (u∗

1
, u∗

2
) = 0. We find c = 4/5, so

u∗

2
=







2/5
1

−4/5





 .

Now we normalize u∗

2
and u∗

2
, and use the normalized vectors u1,u2,u3 as

columns of U . So

U =







−1/3 2/5 2/(3
√
5)

2/3 0
√
5/3

2/3 1/
√
5 −4/(3

√
5)





 .

We also have

Σ =







3
0
0





 , V T = (1).

You can check that
A = UΣV T .

Example 3. Let

A =

(

1 −2
3 −1

)

.

Find the polar decomposition

A = SQ,

where S is symmetric, positive semidefinite, and Q is orthogonal.
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Finding an SVD leads to quite complicated calculations. Here is a short-
cut. We have S = AQ−1, where Q is also orthogonal. The general form of a
2× 2 orthogonal matrix (with determinant 1) is

Q−1 =

(

p −q
q p

)

, p2 + q2 = 1,

(see, for example, Lecture 3.26, page 1, where this was proved).
So we have

S =

(

1 −2
3 −1

)(

p −q
q p

)

=

(

p− 2q −q − 2p
3p− q −3q − p

)

.

Since this must be symmetric, we must have −q− 2p = 3p− q, so p = 0 and
q = ±1. Taking q = 1 we obtain

Q−1 =

(

0 −1
1 0

)

= Q,

and the polar decomposition

(

1 −2
3 −1

)(

2 1
1 3

)(

0 −1
1 0

)

.

q = −1 does not lead to a solution (check!).

Application to signal processing. Suppose that we have a very large
matrix, for example, a 1024× 1024 matrix representing a picture on a com-
puter screen. It contains more than 106 numbers, and the question is whether
we can somehow compress this data when we wish to transmit this picture
through some communication channel with limited capacity.

The idea is to approximate our big matrix by a matrix of small rank. Let
A be our big matrix, and write its SVD decomposition

A = UΣV T .

Remember that Σ is diagonal, with decreasing entries. We will obtain an
approximation to A if we discard the small entries of Σ. Small in comparison
with the largest entries. So we replace the last entries of Σ by zeros, and
obtain a diagonal matrix with some k first non-zero elements. But then only
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first k rows of V T matter: the rest are multiplied on zeros anyway. Similarly,
only the first k columns of U matter, the rest are multiplied by 0. Therefore,
we can transmit only the first k columns of U and V , and hopefully obtain
an approximation of A.

This really works.
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