
Lecture 4.7. Bilinear and quadratic forms

April 9, 2020

In this part of the course we will study quadratic functions on vector
spaces. Vector spaces in this section are real by default.

Definitions. Let V be a real vector space. A function which assigns to
every pair of vectors x,y a real number B(x,y) is called a bilinear form if it
is linear with respect to each vector:

B(c1x1 + c2x2,y) = c1B(x1,y) + c2B(x2,y), (1)

B(x, c1y1 + c2y2) = c1B(x,y1) + c2B(x,y2). (2)

A bilinear form is called symmetric if B(x,y) = B(y,x) for all x,y.

We recognize here the first two properties of the (real) dot product.
B(x,y) = (x,y), where (x,y) is a dot product, is an example of a sym-
metric bilinear form. Here is another example, which is not symmetric:

B1(x,y) = x1y2 − x2y1. (3)

Actually this is the determinant of the 2× 2 matric with columns x,y, so it
is anti-symmetric (switches sign when the columns are exchanged). Here is
an example of a symmetric bilinear form which is not a dot product:

B2(x,y) = x1y1 − x2y2. (4)

For a given basis in the space we can represent bilinear forms by matrices.
Let a basis v1,v2, . . . ,vn be given. Expand

x = a1v1 + . . .+ anvn, and y = b1v2 + . . .+ bnvn.
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then by definition of a bilinear form we have

B(x,y) = B





n
∑

j=1

ajvj,
n
∑

j=1

bjvj



 =
∑

i,j

B(vi,vj)aibj.

So we have an n×n matrix A = (B(vi,vj)) which is called the Gram matrix

of the bilinear form, and

B(x,y) = aTAb =
∑

i,j

aiai,jbj,

where a and b are column vectors of coordinates of x and y.
In particular, if a standard basis is used, then the Gram matrix is A =

(B(ei, ej)) and
B(x,y) = xTAy.

For example, to the forms B1 and B2 in (3) and (4) correspond matrices

A1 =

(

0 1
−1 0

)

and A1 =

(

1 0
0 −1

)

.

We will be mostly interested in symmetric bilinear forms. Their Gram
matrices are symmetric.

To every symmetric bilinear form B(x,y) corresponds a function of one
vector Q(x) = B(x, x). For example, if B is a dot product, then Q is the
corresponding squared norm. This function Q is called the quadratic form,
corresponding to the symmetric bilinear form B. For example, to the sym-
metric bilinear form B2 above corresponds the quadratic form Q(x) = x2

1−x2
2.

It is a simple and and useful fact that the quadratic form completely
determines the symmetric bilinear form from which it comes. In other words,
we can recover B(x,y) from the knowledge of Q only. This is done by the
formula:

B(x,y) =
1

4
(Q(x+ y)−Q(x− y)) .

Exercise. Show that this is true if Q(x) = B(x,x), using the definiton (1),
(2) and symmetry of B.

Every quadratic form on Rn can we written in the standard basis as

Q(x) =
∑

i,j

ai,jxixj = xTAx, where A = (ai,j)
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is a symmetric matrix. The correspondence between quadratic forms and
symmetric matrices is one-to-one, when a basis is fixed.

So quadratic forms are simply polynomials in n variables, where each
monomial has degree 2. (Degree of a monomial is the sum of its degrees
with respect to all variables.) In general, the word “form” is a term for a
homogeneous polynomial, that is a polynomial in which all monomials are of
the same degree.

Examples:

Q(x) = x2

1 + x1x2 + 3x2

2

is represented by the symmetric matrix

(

1 1/2
1/2 3

)

.

x2

1 + x1x2 + 5x2

2 =

(

x1

x2

)(

1 1/2
1/2 5

)(

x1

x2

)

.

Notice where the 1/2 comes from! (x1x2 = (1/2)x1x2 + (1/2)x2x1).
We are going to address two problems:

1. How to simplify a quadratic form by choosing an appropriate basis?
(This is similar to Jordan theorem which shows how to simplify a linear
operator by choosing an appropriate basis).

2. Which quadratic forms are positive, that is Q(x) > 0 for all x 6= 0.
Solution of this problem will describe all possible dot products, since a dot
product in a symmetric bilinear form for which the quadratic form has this
positivity property.

To address problem 1, we investigate what happens to the matrix of a
quadratic form when we change the basis. Let v1, . . . ,vn be some basis in
Rn, and consider the matrix C whose columns are these basis vectors. Then
C is non-singular, and every vector x can be written as

x = Cy,

where y is the column of coordinates of x with respect to the basis vi. Then
for a quadratic form we have

Q(x) = xTAx = (Cy)TACy = yT (CTAC)y.
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So the matrix of the same quadratic form in the new basis is CTAC.
(Notice the difference between quadratic forms and linear operators! If

we change the basis, the matrix A of a linear operator changes to C−1AC.)
This justifies the following

Definition. Two matrices A and B are called congruent if A = CTBC
for some non-singular C.

One can say that congruent matrices represent the same quadratic form
in different bases. (Like similar matrices represent the same linear operator
in different bases).

Let
Q(x) = xTAx

be a quadratic form. So A is a symmetric matrix, and we can use the Spectral
theorem for symmetric matrices to write

A = BΛB−1 = BΛBT , Λ = diag(λ1, . . . , λn),

where λj are real. Here we used that B is orthogonal, so B−1 = BT .
So we can write

Q(x) = xTAx = xTBΛBTx = yTΛy,

where y = BTx. We can consider this as a change of coordinates, and in
new coordinates y, our form is represented by a diagonal matrix:

Q = λ1y
2

1 + λ2y
2

2 + . . .+ λny
2

n.

So every quadratic form can be brought to such form by an orthogonal change
of the basis. Such a new coordinate system y is traditionally called a system

of principal axes for Q. We will later discuss the geometric meaning in detail.
Can one further simplify this representation? If all λj > 0 we can in-

troduce a new coordinate system z, where zj = yj
√

λj and in this new
coordinates our form will have the expression

Q = z21 + . . .+ z2n.

If not all λ are positive, we can stil define zj = yj
√

|λj|, and zj = yj when
λj = 0, and obtain

Q = ±z21 ± z22 ± . . .± z2n. (5)
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In other words, there is always a coordinate system in which the expression
of Q is just a signed sum of the squares of coordinates. Notice that some zj
can be absent in this sum! (They correspond to λj = 0.)

The relation between z and y is a non-singular transformation: it is
represented by a diagonal matrix with positive entries.

So a quadratic form is characterized by its signature, which is triple of
integers showing how many + signs and − signs and 0’s are there in the
representation (5).

It is convenient to write the signture as a sequence of +,− and 0. So for
example, the form z21 + z23 − z24 in R4 has signature (+,+,−, 0). The order
of terms is not essential.

One can state this fact as follows:

Theorem. Every real symmetric matrix A is congruent to a diagonal matrix

with zeros, ones and minus ones on the main diagonal.

The question arises: can a matrix be similar to two such diagonal matrices
with different numbers of zeros, ones and minus ones. (Again we do not
distinguish diagonal matrices obtained by permutation of diagonal entries).
The answer is “no”.

The Law of Inertia for quadratic forms. Two diagonal matrices with

different numbers of zeros ones and minus ones are not congruent.

This means that every quadratic form has a well defined signature which
is independent of its representation by a matrix. And every square symmetric
matrix also has a signature, so that two matrices are congruant if and only
if their signatures are the same.

To prove the law of inertia, we have to express somehow these three
numbers in a geometric (basis-independent) way. This can be done in the
following way.

Let Q be a quadratic form, and define

n+ = max{dimU : Q(x) ≥ 0 for all x ∈ U}.

In words: n+ is the maximum of dimensions of all subspaces such that the
restriction of Q on U is non-negative.

This number n+ depends only on the form Q, and is independent of the
basis and matrix representation of Q. And it is easy to see that for a form
represented as a signed sum of squares as in (5), this number is equal to the
number of non-negative λj.
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So similar matrices have the same numbers n+. Similarly, we show that
the number

n
−
= max{dimU : Q(x) ≤ 0 for all x ∈ U}.

is invariant under congruence. This proves the Law of Inertia. Indeed, the
number of zeros in the signature is n+ + n

−
− n, where n is the dimension of

the space. Then the nuber of pluses is n+ minus the number of zeros, and the
number of minuses is n

−
minus the number of zeros. So all three numbers

are recovered from n+, n−
and the dimension of the whole space n.

So all quadratic forms are distinguished by their sigunatures, and con-
gruent forms have the same signature. Moreover, two forms are congruent if
and only if they have the same signature.

To show that every quaratic form can be brought to the form (5) we
used the Spectral theorem. And we know that finding eigenvalues is difficult.
So the question arises whether we can find a change of the variable which
brings the form to the form (5), and to find its signature without finding the

eigenvalues.
This is indeed the case, and can be achieved by the following algorithm.
Algorithm of bringing a quadratic form to the signed sum of

squares and determining its signature.
1. Suppose that Q has a pure square, for example, the term ax2

1. Consider
all terms which contain x1 and “complete the square”. We write all terms
containing x1 as

ax2

1 + x1L(x2, . . . , xn)

and transform it like this:

= a
(

x1 +
1

2a
L(x2, . . . , xa

)2

+−
b2

4a
L2(x2, . . . , xn).

After that, x1 will enter only to a square (of the term in big parentheses, and
the rest will contain no x1. Then the procedure can be repeated.

2. If Q has no term ax2
j , but has a term of the form ax1x2, for example,

then make the change of the variable

x1 = u+ v, x2 = u− v,

so that this term becomes a(u2 − v2) and we can do step 1.
By performing repeatedly steps 1 and 2, we obtain a sum of the squares

(with signs) at the end.
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Examples.

1.

x2

1+x1x2+3x2

2 = (x2

1+x1x2+x2

2/4)−x2

2/4+3x2

2 = (x1+x2/2)
2+(11/4)x2

2.

The signature is (+,+).

2.
x1x2 + x2x3 = (u2 − v2) + (u− v)x3 = u2 − v2 + ux3 − vx3

= (u+ x3/2)
2 − x2

3/4− v2 − vx3 = (u+ x3/2)
2 − (v + x3/2)

2.

The signature is (+,−, 0).

The total number of squares that you obtain in the end is at most n (the
dimension of the whole space).

This algorithm has a very nice application. Recall that using the Spectral
theorem, we wrote a quadratic form Q(x) = xTAx as

Q(x) = λ1y
2

1 + . . .+ λny
2

n,

where λj are eigenvalues of A.
On the other hand, we have a rational algorithm (using only arithmetic

operations) for finding the signature. Thus we have a rational algorithm
for determining how many eigenvalues of a symmetric matrix are positive,
negative and zero! Without computing them.

For example, the second example above corresponds to the matrix







0 1/2 0
1/2 0 1/2
0 1/2 0





 .

We computed the signature, and this implies that the matrix has one positive,
one negative and one zero eigenvalue. We did this without solving a cubic
equation. And this works for any symmetric matrix.
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