
Lecture 4.9. Positive definite and semidefinite

forms

April 10, 2020

Let A be a symmetric matrix, and Q(x) = xTAx the corresponding
quadratic form.

Definitions. Q and A are called positive semidefinite if Q(x) ≥ 0 for all x.
They are called positive definite if Q(x) > 0 for all x 6= 0.

So positive semidefinite means that there are no minuses in the signature,
while positive definite means that there are n pluses, where n is the dimension
of the space.

We establish some explicit criteria, in terms of A for positive definite
matrices.

Theorem 1. The following conditions are equivalent:

a) xTAx > 0 for all x 6= 0.

b) All eigenvalues of A satisfy λj > 0.

c) All NW (upper left) minors of A are positive.

d) In the reduction of A to row echelon form, no exchanges are required, and
all pivots are positive.

e) A = RTR for some non-singular R.

Proof.
a)←→b). We have seen from the spectral theorem for symmetric matrices
that there is an orthogonal change of the variable x = By which brings our
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form to
Q(x) = λ1y

2

1
+ λ2y

2

2
+ . . .+ λny

2

n,

where λj are eigenvalues of A. It is clear that this sum is positive for all
y 6= 0 if and only if all λj are positive. The condition y 6= 0 is equivalent to
x 6= 0 since B is non-singular.

a), b)−→c). Determinant of a matrix is the product of eigenvalues. So of
all eigenvalues are positive, then determinant is also positive. If we restrict
a positive definite form to the span of e1, . . . , ek, where k ≤ n, we obtain
a positive definite form, so it must have positive determinant. But this
determinant is nothing else but the NW minor of A.

c)−→d). The proof is based on the following formula for the pivots (in the
absence of row exchange):

dk =
detAk

detAk−1

.

Here dk is the k’th pivot, and Ak is the NW k×k submatrix of A (it consists
of the entries in k first rows and columns of A). (When k = 1 one has to set
detA0 = 1 in this formula.)

To prove the formula, notice that row operations (no exchanges!) do not
change detAk. Therefore for all detAk to be positive, the row echelon form
must have no zeros on the main diagonal, and detAk = d1 . . . dk. Our formula
follows.

d)−→a). Recall the LDU -factorization:

A = LDU,

where L is lower triangular, with ones on the main diagonal, U is upper
triangular, with ones on the main diagonal, and D = diag(d1, . . . , dn) the
diagonal matrix with pivots on the main diagonal. Moreover, if no row
exchanges were required, this factorization is unique. Since the matrix A is
symmetric, we must have U = LT , so our factorization becomes

A = LDLT .

Since all pivots are positive, we can write D =
√
D
√
D, where

√
D =

diag(sqrtλ1, . . . ,
√
λn), (positive square root!). So

A = L
√
D
√
DLT = (L

√
D)(L

√
D)T ,
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since (
√
D)T =

√
D, and we can set R = (L

√
D)T . This R is non-singular

since both L and
√
D are non-singular.

e)−→a). We have

Q(x) = xTAx = xTRTRx = yTy = ‖y‖2 > 0,

where y = Rx. If x 6= 0 then y 6= 0 since R is non-singular.
This completes the proof of the theorem.
Notice that finding eigenvalues is difficult. The simplest way to check

that A is positive definite is to use the condition with pivots d). Condition
c) involves more computation but it is still a pure arithmetic condition.

Now we state a similar theorem for positive semidefinite matrices. We
need one more

Definition. A principal minor of A is the determinant of the matrix obtained
by removing some rows and columns with the same numbers from A.

Theorem 2. The following conditions are equivalent:

a’) xTAx ≥ 0 for all x.

b’) All eigenvalues of A are non-negative, λj ≥ 0.

c’) All principal minors are non-negative.

e’) A = RTR for some R (maybe singular, maybe even not square).

I highlighted the differences with Theorem 1. First of all, it is no longer
sufficient to check only NW minors. For example, in the matrix

(

0 0
0 −1

)

,

all NW minors are zero, but it is not positive semidefinite: the corresponding
quadratic form is −x2

2
. But there is one principal minor equal to −1.

Second, there is no analog of condition d). Since some NW minors can
be zero, row exchanges can be required. Row exchanges destroy symmetry
of the matrix.

(Strang proposes to do “simultaneous row and column exchanges” to
preserve symmetry, but this does not help, for example

A =

(

0 1
1 0

)

.
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Simultaneous row and column exchange does nothing to this matrix, and
does not help to bring it to a row echelon form. The associated form

2x1x2 = (1/2)(x1 + x2)
2 − (1/2)(x1 − x2)

2

is not positive semidefinite. Principal minors are 0, 0,−1. And there is no
pivot condition in this case. So this statement of Strang is a mistake).

The proofs of a)←→b), b)−→c) and a)←→e) are similar to the proofs of
the corresponding statements of Theorem 1. The proof that c) implies all
other conditions relies on a formula for all coefficients of the characteristic
polynomial in terms of principal minors, this formula is somewhat compli-
cated, so I omit this part of the proof.

One important application of these theorems is the study of maxima and
minima of functions in calculus. For a function of one variable f(t), we have
the necessary condition of extremum at the point t0: derivative f ′(t0) = 0.
To obtain a sufficient condition (and to tell a maximum from minimum) we
use the second derivative: we can write the first two terms of the Taylor
formula,

f(t) = f(t0) + f ′(t0)(t− t0) + (1/2)f ′′(t0)(t− t0)
2 +O((t− t0)

2),

where O((t − t0)
2) means the term whose ratio to (t − t0)

2 tends to 0 as
t→ t0. So, if f

′′(t0) > 0, the function has a minimum at t0, and if f ′′(t0) < 0
it has a maximum. If f ′′(t0) = 0, the test in not conclusive.

We have a similar test for functions of several variables. Notice that the
term f ′′(t0)(t− t0)

2 is a quadratic form of one variable (t− t0).
In several variables, we have the following Taylor formula

f(x) = f(x0)+f ′(x0)(x−x0)+(1/2)(x−x0)
Tf ′′(x0)(x−x0)+O(‖x−x0‖2).

Here f ′ is the row vector

f ′ = (∂f/∂x1, . . . , ∂f/∂xn),

known as the gradient, and f ′′ is the matrix made of partial derivatives
B = (bi,j), where

bi,j =
∂2f

∂xi∂xj

.
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This matrix is symmetric.
The necessary condition of extremum is f ′(x0) = 0.
Our function has a minimum at x0 when B is positive definite, and max-

imum when it is negative definite (that is −B is positive definite).
For example, when n = 2 we obtain a familiar criterion of a minimum of

f(x, y) from Calculus:

fx,x > 0, fx,xfy,y − f 2

x,y > 0,

which is nothing but the condition that the matrix B is positive definite by
criterion c) of Theorem 1.

Another application of Theorem 1 is that it described all possible dot
products in Rn. Indeed, a dot product was defined as a function which to
every two vectors x and y assigns a number (x,y), and has the following
properties:

(i) it is linear with respect to x and with respect to y,

(ii) symmetric, and

(iii) (x,x) > 0 for all x 6= 0.

We see that each such function is a symmetric (ii) bilinear (i) form, whose
associated quadratic form is positive definite (iii).

Thus any dot product on Rn is given by the formula

(x,y) = xTAy

for some positive definite symmetric matrix A. Notice that all theory of dot
product was developed from the axioms (i), (ii), (iii) only, so it applied to
every possible dot product. So for a fixed symmetric positive definite matrix
A we can speak of “A-orthogonality”, “A- orthogonal projections”, etc.

Some of the theory of bilinear and quadratic forms can be generalized to
complex case. To obtain a meaningful theory, one defines Hermitian forms
B(x,y) which are linear with respect to y and anti-linear with respect to x.
The last condition means that

B(c1x1 + c2x2,y) = c1B(x1,y) + c2B(x2,y),

and have the following symmetry property:

B(x,y) = B(y,x).
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Each Hermitian form is represented by an Hermitian matrix A by the formula

B(x,y) = x∗Ax.

To each Hermitian form an quadratic form is associated: Q(x) = B(x,x),
and this quadratic form can be positive definite or positive semidefinite.

In this course we restrict ourselves to the real case when studying quadratic
forms.

Geometric interpretation of positive definite quadratic forms.

Let Q(x) = xTAx be a positive definite form. The set

{x ∈ Rn : Q(x) = 1}

is called an ellipsoid. For example, when A = I, Q(x) = x2

1
+ . . .+ x2

n, then
the ellipsoid is the sphere of radius 1. If B is an orthogonal matrix such that
A = BΛBT , and we set y = BTx, then the equation of the ellipsoid becomes

1 = xTAx = xTBΛBTx = yTΛy = λ1y
2

1
+ . . .+ λny

2

n.

This can be visualized as a distorted unit sphere: if zj =
√

λjyj,then the
unit sphere in the coordinates zj. To obtain it in coordinates yj it has to be

stretched by the factor of 1/
√

λj in the direction of j-th axis.

The points yj = ±1/
√

λj, all other coordinates are zero, are the intercepts

(intersections of our ellipsoid with yj axes. The original ellipsoid in xj-
coordinates is related to the ellipsoid in yj coordinates by an orthogonal
transformation which can be always taken to be rotation (if determinant of
B is −1, just replace one column of B by its negative, to obtain a new B
with determinant 1.

The conclusion is that any ellipsoid can be rotated so that its equation
takes the standard form

λ1y
2

1
+ . . .+ λny

2

n = 1.

The intervals between the two intercepts with the same axis are called prin-

cipal axes. The lengths of these principal axes are 1/
√

λj and the directions

xj are determined from the equation BTxj = ej, xj = Bej, so xj is just the
jth column of B, that is the j-th eigenvector.
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For example, when n = 2, an ellipsoid is just an ellipse centered at the
origin. The general equation of such an ellipse is

ax2 + 2bxy + cy2 = 1.

the principal axes are directed along the eigenvectors of

(

a b
c d

)

.

and the lengths of the principal semi-axes are 1/
√
λ.

Ellipsoids are frequently encountered in mechanics: for example the el-
lipsoid of inertia of a rigid body.

Determination of the signs of eigenvalues of a generic symmetric

matrix.

Suppose that a symmetric matrix A is generic in the sense that no raw
exchanges are required when bringing it to the row echelon form. Then we
have the LDU-factorization, and as we have seen in the proof of Theorem 1,
d)−→a), in fact

A = LDLT ,

which means that A is congruent to the diagonal matrix of pivots. Since
we also have A = BΛBT , where Λ is the diagonal matrix of eigenvalues,
we conclude from the Law of Inertia for quadratic forms that the number of
positive (negative) eigenvalues is equal to the number of positive (negative)
pivots. This is useful, because finding eigenvalues is hard, while finding pivots
is easy.

Moreover, we can use this fact to compute eigenvalues approximately,
with any given precision. Indeed, suppose we know that all eigenvalues of a
symmetric matrix A are on an interval [a, b]. Then we can determine, how
many of them are on the left half of this interval, and how many on the right
half. For this we consider the matrix

A− (a+ b)I/2,

whose eigenvalues are λj−(a+b)/2 by the Spectral Mapping Theorem. Here
λj are eigenvalues of A. Using pivots, we can determine how many of these
λj−(a+b)/2 are positive and negative. This gives the numbers of eigenvalues
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on each half of [a, b]. Then one can continue this procedure by dividing each
half of [a, b] into two halves again, and so on.

This is one of the practical methods of localizing eigenvalues of a sym-
metric matrix.
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