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Abstract

This is a mini-course taught by the author in IMPAN in May 2023.
It discussed the following circle of questions: Let X be an open simply
connected Riemann surface with some concrete geometric description,
and ϕ is a uniformizing function. How properties geometric properties
of X are related to properties of ϕ. Classical and modern results are
discussed, and some proofs are included.

1. Introduction

According to the Uniformization Theorem, for every simply connected
Riemann surface X there exists a conformal homeomorphism ϕ : X0 → X,
where X0 is one of the three standard regions: the Riemann sphere C, the
complex plane C or the unit disc U. We say that the conformal type of
X is elliptic, parabolic or hyperbolic, respectively. The map ϕ is called the
uniformizing map. If X is given by some geometric construction, the problem
arises to relate properties of ϕ to those of X. This includes the determination
of the conformal type of X, which is called the type problem.

The case which was studied most is that X ⊂ C is a simply connected
region, X ̸= C. Then X is of hyperbolic type, and ϕ is a univalent function
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in U. An example of the result relating geometric properties of X ⊂ C and
properties of ϕ is the classical theorem of Caratheodory: ϕ has a continuous
extension to the closed disc if and only if ∂X is locally connected. This is an
example of exact correspondence between a class of functions and a class of
regions.

Second example is the Koebe 1/4 theorem.
Yet another example is the Ahlfors distortion theorem which relates the

growth of a uniformizing map to the geometry of the image domain.
We recall a more general construction of X. By a (topological) surface

we mean in this text a real manifold of dimension 2 which is Hausdorff,
connected, oriented, and has a countable base.

A surface spread over the sphere is a pair (X, p), where X is a topological
surface and p : X → C a continuous, open and discrete map. This map p
is usually called the projection. The natural equivalence relation is (X, p) ∼
(Y, q) if there is a homeomorphism ϕ : X → Y with the property p = q ◦ ϕ.

By a geometric property of a surface spread over the sphere we mean a
property which is invariant when p is replaced by a composition p ◦ ϕ with
an arbitrary homeomorphism of X.

A more general topological property is one that remains unchanged when
p is replaced by ψ ◦ p ◦ ϕ, where ψ : C → C and ϕ : X → X are homeomor-
phisms.

Examples of topological properties are an omitted value, or completely
ramified value, or a direct singularity. An example of a geometric property
is the Bloch radius.

According to a theorem of Stöılov, every continuous open and discrete
map p between surfaces locally looks like z 7→ zn. Those points where n > 1
are isolated, they are called critical points, or multiple points of multiplicity
n. Stöılov’s theorem implies that there is a unique conformal structure on X
which makes p holomorphic. If ϕ is a uniformizing map, then f = p ◦ ϕ is a
meromorphic function in one of the three standard regions C,C or U. The
surface (X, p) spread over the sphere is then the “Riemann surface of f−1”.
We also call it the surface associated to f , or say that f is associated with
(X, p).

Every surface admits a topologically holomorphic map to the sphere, this
is another result of Stöılov.

If D is a region on the sphere, a branch of p−1 in D is a continuous
function ψ : D → X such that p ◦ ψ = idD.
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We can define the length of a curve in X as the spherical length1 of its
image under p. Then X becomes a metric space with an intrinsic metric,
which means that the distance between two points is the infimum of the
lengths of curves connecting these points. Similarly, if p : X → C, and
the Euclidean metric in C is used to measure lengths of curves, we obtain
a Riemann surface spread over the plane. Theses intrinsic metrics are called
spherical and Euclidean metrics on X.

The intrinsic metric on X is a smooth Riemannian metric of constant
curvature on the complement of the critical set of p, and the critical points
are the conic singularities of the metric. It is easy to show that the intrinsic
metric on X determines the projection p up to an isometry of the image
sphere or the plane. In what follows, unless otherwise stated, (X, p) denotes
a simply connected surface spread over the sphere, equipped with the intrinsic
spherical metric.

2. Singularities

There is another useful metric on X, the Mazurkiewicz metric, ρ(x, y) :=
inf{diam p(γ)} for x, y ∈ X, where diam is the diameter with respect to
the spherical metric in C, and the infimum is taken over all curves γ ⊂ X
connecting x and y. Every non-critical point x ∈ X has a neighborhood
where the Mazurkiewicz metric coincides with the intrinsic one, but in general
the Mazurkiewicz metric is smaller. For example, on the surface (C, cos)
spread over the sphere, the intrinsic distance between 0 and 2πk is 2πk,
while the Mazurkiewicz distance is π.

Mazurkiewicz metric is a convenient tool to define the “singularities of
the inverse function”.

Let X∗ be the completion of X with respect to the Mazurkiewicz metric.
Then p has a unique continuous extension to X∗. The elements of the set
Z = X∗\X are called transcendental singularities of (X, p). We denote by
Za = {z ∈ Z : f(z) = a} the set of transcendental singularities lying over
the point a ∈ C.

The simplest example of a transcendental singularity is a logarithmic
branch point: that is a point in Z which is isolated in Z.

The algebraic singularities are just the critical points of p, so they belong
to X. The images of transcendental and algebraic singularities under p will

1We choose the spherical length element to be 2|dz|/(1+ |z|2), so that the curvature of
the spherical metric is +1.

3



be called singular values. The images of critical points are called critical
values.

If A = f(Z) is the closure of singular values then

F : X\f−1(A) → C\A

is a covering map.
There is another way to define the space X∗ independent on any metric.

Let a be a point in C, and U(a) the set of all connected neighborhoods of
a. Consider a map F which to every U ∈ U(a) puts into correspondence a
connected component of the set p−1(U), so that U1 ⊂ U2 implies F (U1) ⊂
F (U2), and all F (U) are non-empty. Two cases are possible:

a)
⋂

U∈U(a) F (U) = one point in X, or

b)
⋂

U∈U(a) F (U) = ∅.

In the second case we say that F defines a transcendental singularity over
a. We add all these transcendental singularities to X, and obtain the set
X∗. A base of neighborhoods of a transcendental singularity is defined as
the collection of the sets F (U) used in this definition, and the projection p
extends by the formula p(x) = a for a transcendental singularity x over a.
Then the extended map p is continuous on X∗.

It is easy to show that both definitions are equivalent.
An asymptotic curve with an asymptotic value a ∈ C is a curve γ :

[0, 1) → X such that γ(t) → ∞ as t → 1, where ∞ is the added element of
one-point compactification of X, and p(γ(t)) → a.

Every asymptotic curve with asymptotic value a defines a transcendental
singularity over a, and vise versa. One can define an equivalence relation on
the set of asymptotic curves with given asymptotic value so that the classes
of equivalence will correspond bijectively to transcendental singularities.

The set of asymptotic values is an analytic set in the sense of Suslin [25].
The following classification of transcendental singularities is due to F.

Iversen. A transcendental singularity F over a is called direct if for some
U ∈ U(a) the image p(F (U)) does not contain a.

Otherwise the transcendental singularity is called indirect. That is for an
indirect singularity all F (U) contain a-points of p.

The simplest kind of direct singularities are logarithmic ones. They are
defined by the property that p : F (U) → U is a universal covering of U\{a}
for some U ∈ U(a).
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When U is a spherical or Euclidean disk centered at an asymptotic value
a, the components of F (U) are usually called tracts over a.

Examples. (C, exp) has two transcendental singularities: one over 0 and
one over ∞. They are both logarithmic branch points.

(C, cos) has two logarithmic singularities over ∞ and two critical values
over 1,−1.

(C, z sin z) has one direct singularity over ∞, and it is not isolated since
it is the limit (with respect to Mazurkiewicz metric) of critical values.

(C, (sin z)/z) has two indirect singularities over 0, two logarithmic singu-
larities over ∞, and infinitely many critical values converging to 0.

By the modular function we mean the universal cover U → C\{0, 1}.
it has infinitely many logarithmic singularities over 0, 1,∞ and no other
singularities.

Peter Seibert [32]–[35] tried to characterize those metric spaces that can
occur as the set of singularities of open simply connected surfaces spread
over the sphere. He denotes Za = p−1(a) ∩ Z. The following properties
are easy to prove: Z and Za are complete Hausdorff spaces with countable
dense subsets, Za are totally disconnected. Besides the topology defined
by Mazurkiewicz metric, each of these spaces has a cyclic order structure
induced by the natural cyclic order on asymptotic curves. The canonical
topology defined by this order is coarser than the metric topology. Seibert
defines a continuous order-preserving injection ϕ : Z → T, where T is the
unit circle. However in general such a bijection cannot be a homeomorphism:
for example, for the elliptic modular function, the topology of Z is discrete,
while the cyclic order is that of the subset of the unit circle consisting of the
points whose arguments are commensurable with π. Ullrich constructed an
example of a parabolic surface whose set Z has this topology and this order.

Now, if Λ is any closed subset of the unit circle, then there exist surfaces of
both hyperbolic and parabolic types whose singular set Z is order-preserving
homeomorphic to Λ.

3. Speiser class and line complexes

It is useful to have a way to visualize surfaces spread over the sphere. The
simplest way to do this is called the line complex, and it is defined for the
class of surfaces (X, p) with the property that all singularities (transcendental

5



and algebraic) lie over a finite set A ∈ C, so that

p : X\p−1(A) → C\A (1)

is an (unramified) covering map. The class of such surfaces spread over the
sphere is called the Speiser class and is denoted by S.

We also define a wider class of surfaces, which are called cellular. They are
characterized by the property that all singular values belong to some Jordan
curve Γ. We assume that this curve is real analytic (in all known applications
it is sufficient to consider only circles). The p-preimage of such a curve γ is
called a net. This net consists of curves in X which can cross only at the
critical points, and never accumulate in X. These curves break X into simply
connected regions, and one can draw a net in the plane (when X is open),
or on the sphere. Two nets are called equivalent if they correspond by a
homeomorphism of X. Equivalence class of nets determines p completely. A
net decomposes the plane into simply connected regions (faces) open curves
(edges) and points (vertices).

Now we return to the Speiser class. The elements of A are singular values.
Consider an oriented Jordan curve Γ which contains all elements of A. It
defines a cell decomposition of C with two faces Dx on the left hand side of
γ and Do on the right hand side of Γ. The edges of this cell decomposition
are open arcs of Γ between the adjacent points of A, and vertices are points
of A. The preimage p−1(Γ) is the net of p.

Now we consider the dual cell decomposition of that defined by Γ. It has
two vertices which are traditionally denoted by x ∈ Dx and o ∈ D0, and
q = |A| edges. There is a cyclic order of the points of A consistent with the
orientation of Γ, and the corresponding cyclic order on the edges, so we can
label the vertices and edges by residues modulo q. Each face of the dual cell
decomposition contains exactly one point of A, and we label it by this point.
Preimage of this dual cell decomposition is a cell decomposition of X (which
we can identify with the plane or with the sphere, depending on whether X
is open or closed) and it is completely defined by its 1-skeleton. This one
skeleton is called the line complex or the Speiser graph. It is an embedded
graph, and the faces, edges and vertices of the corresponding cell decomposi-
tion are labeled by their p-images. Two Speiser graphs are equivalent if they
correspond by a homeomorphism of X respecting the labels.

It is clear that Speiser graphs have these properties:

(i) They are bi-partite, and all vertices have the same degree q
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(ii) Their faces are open disks with even or infinite number of vertices on the
boundary.

Every properly embedded graph in the plane or in the sphere with these
properties is a line complex of some surface spread over the sphere.

Multiple edges between two vertices result in digonal faces. Replacing
each bunch of adjacent multiple edges by a single edge, we obtain a reduced
line complex. It is a bi-partite embedded graph whose vertices have bounded
degree, and still satisfies (ii). If the faces of such a graph are labeled as above,
the full line complex can be uniquely recovered by adding extra edges in the
appropriate places.

The line complex depends not only on p but also on the choice of the
base curve Γ. Continuous deformation of this curve with fixed set A does
not change the line complex, so the mapping class group of the sphere with
q marked points acts on line complexes, and this action can be explicitly
described [22].

D. Sullivan asked for which surfaces spread over the sphere, the conformal
type is defined by topology. More precisely, let (X, p) be a surface spread
of the sphere. We say that it is of stable type, if (X,ϕ ◦ p) has the same
conformal type as (X, p) for every homeomorphism ϕ of the sphere.

This is the case for surfaces of class S, since the singular values can be
displaced quasiconformally. This observation is due to Teichmüller, and this
was one of the first applications of quasiconformal mappings to the theory of
meromorphic functions. This result can be somewhat generalized by assum-
ing that singularities are “uniformly isolated” that is the distances between
them (in spherical or Mazurkiewicz metric) are at least δ > 0. On the other
hand, it was proved by Volkovyskii [39, Sect. 86-92] that the the parabolic
type of the surface surface (C, (sin z)/z) is unstable. One can also give ex-
amples of parabolic surfaces with non-isolated singularities whose type is
stable. So it remains unclear whether there is a reasonable characterization
of surfaces of stable type, even in parabolic case.

4. Theorems of Gross and Iversen

After these topological preliminaries, we begin to investigate the geo-
metric conditions for the conformal type. First we notice that the set of
asymptotic values by itself does not permit to make any conclusions about
the conformal type.
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There are both parabolic and hyperbolic surfaces spread over the sphere
whose set of asymptotic values is any analytic set A ⊂ C.

Different constructions were given by Heins and by Canton, Drasin and
Granados.

In the parabolic case, there is one condition on this set:

Theorem 1. (F. Iversen) If a meromorphic function f in the plane omits a
value a, then a is an asymptotic value.

Proof. This is easy if f is a rational function, so assume that it is tran-
scendental. Suppose wlog that a = ∞, so that f is entire. For any r > 0,
consider the set {z : |f(z)| > r}. It is not empty for every r > 0 by Liouville’s
theorem. Let Ur be a component of this set. By Phragmén–Lindelöf theorem,
f is unbounded in Ur. This implies that we can choose nested components
for all R, that is for r1 > r2, Ur1 ⊂ Ur2 . This defines a singularity over ∞,
and thus an asymptotic curve.

So the set of asymptotic values of a surface of parabolic type can be large.
However in some sense the singularities must be “rare”. This is the contents
of the following

Theorem 2. (Gross) Let f be a meromorphic function in the plane, and
f(z0) = w0, f

′(z0) ̸= 0, and ϕ is a germ of f−1 which sends w0 to z0. Then
the maximal starlike region to which ϕ has an analytic continuation contains
a ray from w0 to ∞ in almost every direction.

Remarks. Of course, infinity does not play any special role, and was used
only for simplicity of formulation. Same applies to the condition f ′(z0) ̸= 0.

Proof. Suppose for simplicity that z0 = w0 = 0. Let G be the maximal
starlike region to which ϕ has an analytic continuation. For a maximal
segment [0, w) ⊂ G, w is either critical or asymptotic value. The set of
critical values is countable, so all we need to prove is that the set of directions
of segments which end at an asymptotic value have measure 0. Let GR = G∩
{w : |w| < R}. It is sufficient to prove the statement for maximal segments
whose endpoints are in GR. The germ ϕ has an analytic continuation to GR

and maps it on some regionD in z-plane, 0 ∈ D. Any maximal interval in GR

which ends at an asymptotic value corresponds to a curve in D from 0 to ∞.
Consider the intersection of a circle |z| = r with D. It consists of countably
many arcs γ. The images f(γ) of these arcs in DR separate 0 from the
asymptotic values which are the endpoints of the maximal segments in GR.
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So it is sufficient to prove that the total length of these images with respect
to the metric |dw|/|w| can be made arbitrarily small by an appropriate choice
or r. This length is

s :=
∫
ℓr

∣∣∣∣∣f ′

f

∣∣∣∣∣ r dθ,
where ℓr = {z ∈ D : |z| = r}. By Cauchy–Schwarz inequality,

s2 ≤ 2πr
∫
ℓr

∣∣∣∣∣f ′

f

∣∣∣∣∣
2

r dθ.

Dividing by 2πr and integrating from some r0 > 0 to ∞, we obtain

∫ ∞

r0

s2(r)

2πr
dr ≤

∫ ∞

r0
dr
∫
ℓr

∣∣∣∣∣f ′

f

∣∣∣∣∣
2

r dθ.

the integral in the RHS is at most the area of GR from which a neighborhood
of 0 is removed, with respect to the metric |dw|/|w|, so this area is clearly
finite. Therefore, the integral in the LHS must be convergent, which implies
lim infr→∞ s(r) = 0. This completes the proof.

This was the first application of the Length and Area argument in these
lectures, and we will see many more.

One important consequence of the Gross Theorem is

Theorem 3. (Iversen) Let f be a meromorphic function in the plane, ϕ
is any holomorphic germ of f−1 at a point w0, and γ : [0, 1] → C a curve
with γ(0) = w0. Then for every ϵ > 0 there is a curve γ1 : [0, 1] → C
with γ1(0) = w0 and γ1(t) − γ(t)| ≤ ϵ, t ∈ [0, 1] such that ϕ has an analytic
continuation along γ1.

So the set of singularities of a parabolic surface cannot contain continuum.
There are two interesting unsolved questions related to the Gross’ theo-

rem.

Question 1. Can the estimate of the size of the exceptional set in the Gross
theorem be improved?

It is known that it can have the power of continuum, [39, Sect. 45], but in
all known examples it is a much smaller set than zero (logarithmic) capacity.
Is it really always of zero capacity?
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Question 2. Let F (z, w) be an entire function of two variables. Consider a
germ ϕ of the implicit function satisfying F (z, ϕ(z)) = 0. Does the maximal
star of analyticity of ϕ contain rays in almost every direction?

It is due to Julia that germs in Question 2 have the Iversen property. But
there is no known analog of Gross’s theorem for this case.

5. Theorems of Picard and Bloch and some of their development

Picard’s theorem saying that a non-constant meromorphic function can-
not omit 3 values can be considered as a sufficient condition of hyperbolic
type: if the projection map omits three values than the surface must be of
hyperbolic type.

The number of generalizations of Picard’s theorem is really enormous, so
we can consider here only some lines of development.

A point a ∈ C is called a totally ramified value (of multiplicity m ≥ 2)
of a surface (X, p) spread over the sphere, if all preimages of a under p are
multiple, (of multiplicity at least m). We allow m = ∞ which means that
the value a is omitted.

Nevanlinna’s theorem If a surface spread over the sphere has q totally
ramified values of multiplicities mk, 1 ≤ k ≤ q, and

q∑
k=1

(
1− 1

mk

)
> 2, (2)

then the surface is hyperbolic. In particular, a parabolic surface has at most
four totally ramified values.

The example (C, ℘) shows that a parabolic surface can indeed have 4
totally ramified values. Moreover, one can easily show that the equation

q∑
k=1

(
1− 1

mk

)
= 2

has 6 solutions up to permutation of the mk:

(∞,∞), (2, 2,∞), (2, 4, 4), (3, 3, 3), (2, 4, 6), (2, 2, 2, 2).

and to each of these solutions corresponds an elliptic or trigonometric func-
tion.
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We give a short proof of this theorem which is due to Robinson, and based
on the

Ahlfors Lemma. Let u be a subharmonic function in the disk |z| < R that
satisfies

∆u ≥ e2u. (3)

Then u(z) ≤ vR where

vR(z) := log
2R

R2 − |z|2
.

Remarks. 1. Here vR(z)|dz| is the line element of the the hyperbolic metric,
which is a complete conformal metric of curvature −1 on the disk. Such
metric exists and is unique on every hyperbolic Riemann surface.

2. Inequality (3) is in the sense of D′-distributions. In many applications the
function u is not smooth. Ahlfors wrote before the appearance of the the-
ory of distributions, so he defines what he calls an “ultrahyperbolic metric”
ρ(z)|dz| as follows:

(i) ρ is upper semi-continuous,
(ii) at every z0 with ρ(z0) > 0 there exists a supporting metric ρ0, of

class C2 in a neighborhood of z0 such that ∆ log ρ0 ≥ ρ20, and ρ ≥ ρ0, while
ρ(z0) = ρ0(z0).

The formulation with generalized Laplacian is due to M. Heins.

3. The general framework of metric spaces with length element ρ(z)|dz|
where ρ is not smooth is provided by Aleksandrov’s theory of “surfaces of
bounded curvature”, which treats arbitrary metrics with ρ = eu, where u
is a difference of subharmonic functions. The integral curvature on such a
surface is a Radon measure.

In particular, if ρ(w) ∼ |w|α−1, where α > 0, the metric has a conic
singularity with angle 2πα. When such a metric is pulled back by a function
w = f(z) with critical point of order m − 1 (that is f(z) = zm in local
coordinates) then the pull back metric has a conic angle mα:

|w|α−1|dw| = m|z|mα−m|z|m−1|dz| = m|z|mα−1|dz|.

To a conic singularity with angle 2πα corresponds an atom of the curvature
mass 2π(1 − α). (Laplacian at a conic singularity has an atom of opposite
sign).
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For example, the surface of a cube, has total curvature 4π since it is
homeomorphic to the sphere. The curvature is zero everywhere except the
vertices, and at each vertex we have the total angle 3π/2, so each vertex gives
an atom of mass π/2 and the sum over 8 vertices is 4π.

Proof of Ahlfors Lemma Fix any r ∈ (0, R). If the set D = {z : |z| <
r, u(z) > vr(z)} is not empty, then there is a point in this set where u − v
has a local maximum. Indeed, since vr(z) → +∞ as |z| → r, we have
v(z) = vr(z) on the boundary of each component of D, so a positive upper
semi-continuous function must have a global maximum in this component.
On the other hand, u− v is subharmonic on D since

∆(u− vr) ≥ e2u − e2vr > 0.

This contradicts the maximum principle, and proves the lemma.

Corollary. If a Riemann surface possesses a conformal metric of curvature
≤ −δ < 0, then it is hyperbolic.

Proof of Nevanlinna’s theorem. Without loss of generality ak ∈ C for
all k. Consider the metric on the Riemann sphere with the line element
λ(w)|dw|, where

λ(w) =
n∏

k=1

(1 + |w − ak|ϵ)|w − ak|1/mk−1,

where ϵ > 0 is so small that

nϵ−
n∑

k=1

(
1− 1

mk

)
< −2,

which is possible to achieve in view of our assumption (2). Using the formula,

∆ log(1 + |z|ϵ) = ϵ2|z|ϵ−2(1 + |z|ϵ)−2

one can be verify directly that the curvature of this metric on the complement
of the singularities ak is ≤ −δ < 0 for some δ. When we pull back this metric
via f , the angles at all the singularities will be ≥ 2π; in local coordinates at
a point of multiplicity m we have

|w|1/mk−1|dw| ∼ |z|m/mk−m+m−1|dz| = |z|m/mk−1|dz|,
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and since it is assumed that m ≥ mk, we have a metric of curvature ≤ −δ.
By Ahlfors Lemma, such a metric cannot exist in the plane.

Of curse one could use the hyperbolic metric with conic singularities, but
Ahlfors Lemma allows greater flexibility, and permits to construct the metric
explicitly.

Ahlfors’s Five Islands Theorem. Suppose that for five Jordan regions
with disjoint closures on the sphere, there are no branches of p−1 in any of
these regions. Then X is of hyperbolic type.

This theorem was stated for the first time by Bloch [10] (with discs in-
stead of Jordan regions) and proved by Ahlfors in [2], as a corollary from
his “Uberlagerungsflachentheorie”. It is a recent discovery [6] that actually
Theorem 1.2 can be derived from Theorem 1.1 by a simple argument. This
derivation is based on the following important principle:

Zalcman’s Lemma. Let F be a family of meromorphic functions in some
region D, which is not normal in D. Then there exists a sequence fn ∈ F ,
and two sequences rn > 0 and zn ∈ D such that there exists a non-constant
limit

f(z) = lim
n→∞

fn(rnz + zn),

uniform on compact subsets of C, and moreover,

f#(z) :=
|f ′(z)|

1 + |f(z)|2
≤ f#(0) = 1, z ∈ C.

Proof. Without loss of generality we may assume that D is the unit disc,
functions of the family F are meromorphic in the closure of D, and F is not
normal at 0. This means that there exists sequence fn ∈ F and wn → 0 such
that f#

n (wn) → ∞. Then

max
z∈D

(1− |z|)f#
n (z) = (1− |zn|)f#

n (zn) ≥ (1− |wn|)f#
n (wn) → ∞.

Thus rn = 1/f#
n (zn) = o(1−|zn|). We claim that rn and zn have the required

property. Indeed, putting gn(z) = fn(rnz + zn), we obtain g#n (0) = 1 and

g#n (z) = rnf
#
n (rnz + zn) ≤ rnf

#
n (zn)

1− |zn|
1− |rnz + zn|

≤ 1− |zn|
1− |zn| − rn|z|

→ 1,
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because rn = o(1 − |zn|). So gn is a normal family. After selecting a subse-
quence we get gn → f for some meromorphic function f , f#(z) ≤ 1, z ∈ C
and f#(0) = 1, which proves all statements of the lemma.

Now we derive Theorem 1.2 by contradiction. Suppose that f is a mero-
morphic function in the plane, and Dk are five disjoint Jordan regions such
that there are no inverse branches of f−1 in Dk, 1 ≤ k ≤ 5. Choose five
points ak on the sphere and consider quasiconformal homeomorphisms ψn of
the sphere which map each Dk into 1/n-neighborhood of ak. Then the sur-
faces (C, ψn ◦ f) spread over the sphere are all parabolic because the maps
ψn ◦ f are quasiregular2, so there exist homeomorphisms ϕn of C such that
fn = ψn ◦ f ◦ϕn are meromorphic functions. These functions have no inverse
branches over 1/n neighborhoods of ak. We can use arbitrarily in the choice
of ϕn to normalize our functions: fn(0) = 0, f ′

n(0) = 1. If the family {fn} is
normal in the whole plane, then the limit functions are non-constant because
of the normalization, and it is easy to see that ak are totally ramified values
of these functions, contradicting Theorem 1.1. If {fn} is not a normal family
in the plane, we apply Zalcman’s lemma to make it normal, and again obtain
a contradiction.

Zalcman’s lemma shows the importance of study of meromorphic func-
tions with bounded spherical derivative. Very little is known about this class.
We mention a theorem of Clunie and Hayman that if an entire function has
bounded spherical derivative than it is at most of order one, normal type.
(A typical meromorphic function of this class has order two, normal type).
This theorem of Clunie and Hayman was subject to several generalizations.
Eremenko extended it to holomorphic maps C → Pn: if such a map omits
n hyperplanes, and has bounded spherical derivative, then it is of at most
normal type, order 1. Duval and da Costa extended this in the spirit of the
second main theorem of Nevanlinna: if f is a meromorphic function with
bounded spherical derivative, then

T (r, f) ≤ N(r, a) +O(r), for every a ∈ bC.

They also obtained a similar result for the maps C → Pn, though it is
less precise than expected. Tsukamoto investigated the optimal constant in

2Quasiregular maps in dimension 2 are compositions of holomorphic functions with
quasiconformal maps. Quasiconformal maps preserve the conformal type of a simply
connected Riemann surface.
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the following problem: what is the maximal value of lim supT (r, f)/r for
meromorphic functions whose spherical derivative does not exceed 1. The
extremal function is supposed to be the Weierstrass function for a hexagonal
lattice.

Original application of Ahlfors Lemma was to the estimate of the Bloch
constant.

Theorem of Valiron Let (X, p) be a parabolic surface spread over the plane.
Then X contains Euclidean disks of arbitrarily large radius.

Using Valiron’s idea, Bloch stated the more general theorem:

Theorem of Bloch There is an absolute constant B, such that for every
function holomorphic in the unit disk and satisfying |f ′(0)| = 1 and for every
ϵ > 0 there is a branch of f−1 defined in some disk of radius > B − ϵ.

Following Ahlfors, we derive Bloch’s theorem from the Ahlfors Lemma,
and show that B ≥

√
3/4. Let R(w) be the radius of the largest unramified

disk centered at w on the Riemann surface of the inverse function. Consider
the metric λ(w)|dw| with

λ(w) =
A√

R(w)(A2 −R(w))
,

where A2 > Bf := supw R(w). Then one can show that the pull-back
λ(f(z))|f ′(z)||dz| is a metric of curvature ≤ −δ < 0 in the unit disk.

Comments. The expression

A√
|w|(A2 − |w|)

is the density of the complete metric of curvature −1 in the disk |w| < A2,
with conic singularity with angle π at 0. If D is the largest schlicht disk
around w0, then there is a singularity w1 of f

−1 on the boundary of this disk,
whose distance to w0 is R(w0), and

A√
|w − w1|(A2 − |w − w1|)

|dw|

is the supporting metric at w0 in the sense of Ahlfors.
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The problem of finding the exact value of the optimal constant B in
Bloch’s theorem is still unsolved. Heins showed that B >

√
3/4, and Bonk

was the first to obtain an explicit number >
√
3/4. This was only slightly

improved since then: the world record is B ≥
√
3/4 + 2 · 10−4 ≈ 0.435. On

the other hand, there is a very plausible conjecture that

B =
√
π21/4

Γ(1/3)

Γ(1/4)

√√√√Γ(11/12)

Γ(1/12)
≈ .4719.

The extremal function is the covering of the complement of the hexagonal
lattice with simple ramification points over the lattice points.

If we take the five regions in Ahlfors’s theorem to be spherical discs of
equal radii, Theorem 1.1 implies the following [2]: Suppose that for some
ϵ > 0 there are no branches of p−1 in discs of radii π/4 − ϵ. Then X is
of hyperbolic type. The question arises, what is the best constant for which
this result still holds. Let B(X, p) be the supremum of radii of discs where
branches of p−1 exist, and B = inf B(X, p), where the infimum is taken over
all surfaces of elliptic or parabolic type. Ahlfors’s estimate B ≥ π/4 was
improved by Pommerenke [30] to B ≥ π/3, and recently the sharp result was
obtained in [11]:

B = b0 := arccos(1/3) ≈ 0.39π.

We have B(C, ℘) = B, where ℘ is the Weierstrass function of a hexagonal
lattice. It is interesting to notice that B = b0 implies Theorem 1.1 by a
simple argument given in [11].

For surfaces (X, p) of elliptic type we have B(X, p) > b0, but it is not
known whether the constant b0 is best possible in this inequality.

We sketch the proof for elliptic surfaces. First one constructs a triangula-
tion T of X into geodesic triangles, so that the vertices of this triangulation
coincide with the set of critical points, and the circumscribed radius of each
triangle is at most B(X, p). This is always possible to do if B < π/2 which
we can assume. Suppose now that B(X, p) ≤ b0. Then the circumscribed
radius of each triangle is at most b0, and an elementary geometric argument
shows that the area of each triangle is at most π. Notice that by Gauss
formula, area(∆) =

∑
α(∆)− π, where α(∆) is the sum of the angles of ∆.

As area(∆) ≤ π we conclude that area(∆) ≤ α(∆)/2. If we denote by α(v)
the total angle at a vertex, then α(v) = 4π, assuming that all critical points
have multiplicity 2. If d is the degree of our rational function then the total
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area is

4πn =
∑
∆∈T

area(∆) ≤ 1

2

∑
v

α(v) = 2π(2n− 2),

and this is a contradiction.

The proof of B ≥ b0 for parabolic surfaces is more complicated. For our
class of surfaces with intrinsic metric, one can define integral curvature [31]
as a signed Borel measure on X which is equal to the area on the smooth part
of X and has negative atoms at the critical points of p. The assumption that
B(X, p) < b0 implies that the atoms of negative curvature are sufficiently
dense on the surface, so that on large pieces of X the negative part of the
curvature dominates the positive part. Then a bi-Lipschitz modification of
the surface is made, which spreads the integral curvature more evenly on
the surface, resulting in a surface whose Gaussian curvature is bounded from
above by a negative constant, and the Ahlfors–Schwarz lemma implies hyper-
bolicity. A non-technical exposition of the ideas of this proof is given in the
survey [13] which contains some further geometric applications of this tech-
nique of spreading the curvature by bi-Lipschitz modifications of a surface.

6. Sufficient conditions of parabolic type

Let ds = λ|dz| be a conformal metric in a disk {z : |z| < R}, where
R ≤ ∞. We assume it is complete. Let Wr be the metric disk centered
at the origin, Γr the component of ∂Wr which separates 0 from the circle
|z| = R, and

L(r) =
∫
Γr

ds,

the length of Γr. Then we have:

2π ≤
∫
Γr

|dz|
|z|

=
∫
Γr

√
λ

1√
λ|z|

|dz|,

By Cauchy-Schwarz:

4π2 ≤
∫
Γr

λ|dz|
∫
Γr

λ|dz|
|z|2λ2

= L(r)
∫
Γr

ds

|z|2λ2
.

Dividing on L(r) and integrating from some R0 > 0 to R we obtain

2π2
∫ R

R0

dr

L(r)
≤
∫ R

R0

dr
∫
Γr

ds

|z|2λ2
=
∫ ∫

WR\WR0

drds

|z|2λ2
=
∫
WR\WR0

dxdy

|z|2
.
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the last integral equals to the “logarithmic area”. Since this area is finite
if R < ∞, divergence of the integral in the left hand side gives a sufficient
condition of parabolic types.

On the other hand if R = ∞, then there exists a conformal metric, namely
ds = |dz|/|z| which is complete, and for which the integral in the LHS of (4)
is divergent. So we obtain:

Theorem 4. A simply connected open Riemann surface is of parabolic type
if and only if it supports a complete conformal metric such that∫ ∞ dr

L(r)
= ∞, (4)

where L(r) is the length of the part of the circle of radius r centered at a fixed
point which separates this point from infinity.

As an example, let us consider the radial metric

ds =
√
dr2 + L(r)dθ2

in the plane, where r and θ are the polar coordinates. (It is not conformally
equivalent to the standard metric!) Milnor [28] proved independently of
Ahlfors that this surface is parabolic if and only if the integral (4) diverges.
He also obtained the following criterion in terms of the curvature

K = − d2L

Ldr2
:

If K ≥ −1/(r2 log r) for large r, then the surface is parabolic. If K ≤
−(1 + ϵ)/(r2 log r) for large r and if g is unbounded then the surface is hy-
perbolic. (If g is bounded, it is parabolic, by the first part.)

The result is based on the observation that for rotationally symmetric
metrics, (4) is actually necessary and sufficient for parabolicity. So parabol-
icity follows from the Ahlfors criterion by a simple argument relating K and
L. The hyperbolicity criterion was generalized by Peter Doyle [14] as follows.
Let r, θ be polar coordinates on a simply connected Riemannian surface, that
is we fix a point, and issue a geodesic from this point with argument θ. Then
r is a distance along this geodesic, and we assume that such a global coor-
dinate system exists, that is geodesics do not intersect except at the origin.
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This happens for example when the curvature is non-positive. Then the
expression of the metric in geodesic coordinates has the form√

dr2 + g2(r, θ)dθ2

with some non-negative function g. Doyle’s criterion of hyperbolic type is∫ 2π

0

dθ∫∞
0

dr
g(r,θ)

> 0, (5)

which means that
∫∞
0 dr/g(r, θ) < ∞ on a set of positive measure. When g

is independent of θ one recovers the Milnor criterion.
We also mention the result of Ch. Blanc and F. Fiala [9], that when a

complete Riemannian surface S with curvature ω satisfies∫
S
ω−dσ <∞,

where ω− = −max{−ω, 0} and dσ is the area element, then S is parabolic.
This can be obtained from Ahlfors’ parabolicity criterion.

Theorem 4 can be variously modified, to make it more flexible in applica-
tions. First of all, one may allow λ to have singularities at infinite (metric)
distance from the origin. Second, one may start instead of the metric with
a function U , which is the case of the metric is the distance from the origin.
Here is a version of Ahlfors’ criterion:

Theorem 4′. Let U be a real-valued function in the disk {z : |z| < R},
continuous except isolated points, and such that U(z) → +∞ as z tends to
the points of discontinuity or |z| → R.

Suppose in addition that U has continuous partial derivatives, except on
some smooth arcs, such that every point of the disk has a neighborhood in-
tersecting finitely many of these arcs.

Let

L(r) =
∫
U=r

|∇U ||dz| =
∫
U=r

∣∣∣∣∣∂U∂n
∣∣∣∣∣ |dz|.

If (4) holds then R = ∞.

The proof is essentially the same: we use {z : U(z) = r} instead of Γr,
and |∂U/∂n| instead of λ.
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As Ahlfors says, this result does not solve the problem but “indicates the
direction of research”. Concrete criteria of parabolic type can be stated by
choosing the metric.

In his first paper of 1931 he used the pull back of the Euclidean metric
and obtained a rather poor criterion. In the commentaries to his collected
work he writes: “it took me five years to realize that I had chosen the wrong
metric. In the next paper I did exactly the same thing, but this time for
the covering of the Riemann sphere with distances counted in the spherical
metric”.

Let λ|dz| be the spherical metric on a simply connected surface S spread
over the Riemann sphere. Fix a point p ∈ S and denote by νk the number
of critical points (counting multiplicities) whose spherical distance from p0 is
in the interval [πk, π(k + 1)]. Also, let n(t) be the number of critical points
at the distance at most πt from p.

Theorem 5. (Ahlfors) Suppose that S has no transcendental singularities.
Then each of the following conditions is sufficient for parabolic type:

∞∑
k=1

1

νk
= ∞,

∫ ∞ tdt

n(t)
= ∞. (6)

The assumption that S has no transcendental singularities is needed to
ensure that the pull back of the spherical metric is complete. Theorem 2
easily follows from Theorem 1 if one notices that a circle of radius r in S
with respect to the spherical metric consists of arcs of circles centered at
the critical points whose distance to p is between r and r − π. The second
condition in (6) implies the first one by Calculus.

For example, the surface S corresponding to an elliptic function, we have
n(t) ∼ ct2, so conditions (6) hold.

The condition that S has no transcendental singularities was relaxed by
Z. Kobayashi. He assumes only that singularities of S are isolated (thus
admitting logarithmic branch points). With this assumption he defines the
“Kobayashi net” (which is also known as Voronoi diagram) as the subset of S
consisting of the points whose spherical distance from the set of singularities
is attained on at least two singularities. In other words, if a is a singularity,
one defines W (a) as the set of points in S which are closer to a than to any
other singularity, and the Kobayashi net is the union of the boundaries of
those polygons W (a).
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Then he defines a Kobayashi metric in the following way:
a) on the net, it coincides with the spherical metric.
b) to each cell W (a) it is extended as a singular metric with the singu-

larity at a which makes W (a) isometric to a half of a cylinder. In the local
coordinate at a the length element has the form

ds =
∣∣∣∣log w − a

1 + aw

∣∣∣∣ .
By applying Ahlfors criterion to this metric, he obtains the following

Theorem 6. (Kobayashi) Let S be an open Riemann surface spread over
the sphere whose singularities are isolated. Let ν(t) be the number of points
of the net at the distance t from a fixed point p. If∫ ∞ dt∫ t

0
ν(τ)dτ

= ∞,

then S is of parabolic type.

For example, every surface with finitely many singularities is of parabolic
type, the result previously proved by Nevanlinna and Elfving with a more
complicated argument.

The following convenient sufficient condition of parabolic type is due to
Nevanlinna and Wittich. It applies to Riemann surfaces of class S (with
singularities lying over a finite set of points in C.

Let us fix a vertex v0 of the line complex and consider the subset Wn

of the line complex at combinatorial distance n. This is a finite connected
graph, and let σn be the number of vertices of Wn which can be connected
to infinity by curves not intersecting Wn. Then the sufficient condition of
parabolic type (due to Nevanlinna and Wittich) is

∞∑
n=1

1

σn
= ∞.

The proof is uses a version of Kobayashi argument, simplified by applying
some auxiliary quasiconformal mappings.

One historically important class consists of surfaces satisfying the follow-
ing conditions:
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a) all singularities are logarithmic and they lie over a finite set,

b) there are no logarithmic ends, and

c) every vertex of the reduced line complex has degree 2 or 3.

The reduced line complex is a tree, whose branches have integer length.
Fixing as ramified vertex we order the branches (sequences of edges and
vertices of degree 2) according to the distance from this fixed vertex. Suppose
that all these branches of a given generation k have the same length ℓk,
and the sequence ℓk is non-decreasing, we obtain a necessary and sufficient
criterion of parabolic type:

∞∑
n=1

log ℓn
2n

= ∞. (7)

The sufficient part can be obtained from Kobayashi’s criterion, while the
necessary part, which is due to Le Van Thiem (after previous weaker criteria
of Teichmüller and Kobayashi). This is obtained by a quasiconformal surgery
mapping pieces of the Riemann surface onto the pieces of Riemann surface
of the modular function.

Milnor’s theorem mentioned above suggests type criteria in terms of cur-
vature. There is no conformal metric in the plane whose curvature is bounded
from above by a negative constant. Let S be a surface spread over the plane
equipped with the pull back ρ of the spherical metric. This metric has cur-
vature 1 at all points except the critical points, while at a point where the
local degree is n, its integral curvature has an atom of mass 2π(1− n). Now
one can exhaust our surface S by metric disks Vt of radii t centered at a fixed
point t. Let A(t) be the area of the disk, and K(t) its integral curvature.
Consider the quantity

V = lim sup
A(t)

V (t)
(8)

one can conjecture that the surface is parabolic if V = 0 and hyperbolic if
V < 0. When S is in Speiser class we may assume that the base curve is a
great circle so to each vertex of line complex corresponds integral curvature
2π, the area of a hemisphere. Now we spread the negative curvature coming
from a face of the line complex equally between its 2n vertices, and this gives
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the amount

K(v) = π

2− ∑
{F :v∈F}

(
1− 1

k(F )

)
attached to each vertex; here k is the number of edges on the boundary of a
face, and summation is over all faces F whose closures contain v. Nevanlinna
proves that if K(v) = K is the same for all vertices, then the surface is of
hyperbolic or parabolic type depending on whether K < 0 or K = 0.

Then he considered the number of vertices A(n) at the distance at most
n from a fixed vertex, and V (n) =

∑
v∈A(n)K(v), and

V = lim sup
n→∞

V (n)

A(n)
,

and conjectured that the type is hyperbolic or parabolic if V < 0 or V = 0,
respectively.

Exercise. Prove that V ≤ 0 for every infinite graph embedded in the
sphere.

It was recently proved that the largest number of vertices in a planar
graph with all vertices and faces of degree at least 3 and K(v) > 0 at each
vertex has 208 vertices, except two explicitly described families of graphs,
“prisms” and “antiprisms” [21].

Nevanlinna’s conjecture turned out to be wrong. Teichmüller [36] con-
structed a line complex corresponding to a surface of hyperbolic type, with
V = 0. Actually this is a line complex of the type discussed in section dis-
cussed in section 4 above. More recently, Benjamini, Merenkov and Schramm
constructed an example of line complex with V < 0 corresponding to a
parabolic surface. They also constructed an Aleksandrov smooth metric on
a parabolic surface for which the quantity V defined in (8) is negative. This
example can be described as follows: the conformal metric is defined in the
plane by the formula λ(z)|dz|, where

λ(x+ iy) =

{
y−1, y > 1,
e1−y, y < 1.

Hyperbolicity criterion based on curvature becomes true if one replaces
the condition V < 0 by certain uniform condition of negativity of curvature.
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In this way one obtains an exact correspondence. We state it for Aleksandrov
surfaces.

Theorem 7. Let S be an open simply connected Aleksandrov surface of
curvature bounded from above. The following conditions are equivalent:
a) There are constants B and ϵ such that the integral curvature of every disk
of radius B is at most −ϵ.
b) A linear isoperimetric inequality holds on S.
c) S is hyperbolic and conformal maps from the unit disk to S are satisfy the
Lipschitz condition with respect to the hyperbolic metric in the unit disk and
the metric in S.

All three constants involved in a), b), c) are bounded in terms of each
other.

In the case of non-positively curved surfaces this result was proved in
[12], and the general case in [17]. Duval’s proof was non-constructive and
did not give any explicit bounds for the constants. A constructive proof was
proposed by Bruce Kleiner (unpublished).

This result applies to the Riemann surfaces spread over the plane with the
pullback of the Euclidean metric, and to the surfaces spread over the sphere
with the pullback of the spherical metric. Functions satisfying c) are called
Bloch functions in the first case and normal functions in the second case.
So this theorem gives an exact geometric description of Bloch and normal
functions.

A necessary and sufficient conditions of the conformal type of simply
connected Riemann surface can be stated in terms of extremal length.

Let D be a closed disk in the surface, then the type is parabolic or hyperbolic
depending on whether the extremal distance from D to ∞ is finite or infinite.

Extremal distance has a nice physical interpretation: it is nothing but
the electrical resistance of a thin homogeneous plate modeled by our surface
[16]. Doyle [14] interpreted his criterion (5) in terms of the familiar laws
of resistance of a system of conductors connected in parallel circuit, while
Ahlfors’ criterion (4) corresponds to a connection in a sequence.

Another necessary and sufficient condition for a simply connected surface
with Riemannian metric can be given in probabilistic terms:

A simply connected Riemann surface is parabolic iff the Brownian motion on
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it is recurrent.

The question may be asked whether this criterion can be restated in terms
of a random walk on a graph associated with a surface. One candidate is the
Speiser graph, but recurrence or transience of the random walk on the Speiser
graph is not the same as recurrence or transience of the Brownian motion
(an example is given in Merenkov’s thesis, Appendix A. It is essentially the
example described above in connection with (7)).

Doyle [15] found an appropriate extension of the Speiser graph for the
type criteria. His extension is similar to the Kobayashi “cylindrical surface”.

The half-plane lattice Λ is the graph whose vertices are Z × Z≥0 and a
vertex (x, y) is connected to (x′, y′) if (x − x′, y − y′) ∈ {(±1, 0), (0,±1)}.
The boundary of this graph is the infinite chain Z× {0}. The group Z acts
on the half-plane lattice by shifts, and the half-cylinder lattice Λn is Λ/nZ.

Let n ≥ 1 be given. For k ≥ n, we replace each face of the Speiser graph
with 2k edges by the half-cylinder lattice Λ2k, and each face with infinitely
many edges by a half-plane lattice Λ, identifying the boundaries of the faces
with the boundaries of the lattices. The result of this construction is called
the extended Speiser graph Γn. It has a bounded degree and all faces have at
most max{2(n− 1), 4} edges.

Theorem 8. For every n ≥ 1, a surface (X, p) of Speiser class has parabolic
type iff the simple random walk on Γn is recurrent.

This theorem is essentially given by Doyle [15], but we state it in a mod-
ified form proposed by Merenkov in his thesis [27]. The idea of the proof
is construction of conformal metric on X which is makes X roughly isomet-
ric to the extended Speiser graph. This conformal metric is essentially the
Kobayashi cylindrical metric.

7. Nevanlinna theory

Conformal type criteria constitute only a part of geometric theory of
meromorphic functions. Suppose that the type is known to be parabolic.
How geometric properties influence the the asymptotic behavior of the uni-
formizing function?

In this section we introduce some notions which characterize this asymp-
totic behavior. Consider a rational function first. The main characteristic is
the degree, which can be defined in two very different ways.

a) As the topological degree of the map f : C → C, or put it simply the

25



number of preimages of a point, counted with multiplicity.

b) As max{deg p, deg q} where f = p/q is an irreducible representation of
two polynomials.

For a polynomial, the degree can be defined as a rate of convergence to
∞ as z → ∞.

The Nevanlinna characteristic is a measure of complexity of a meromor-
phic function which is similar to the degree of a rational function.

It can be also defined in two ways, and equivalence of these definitions is
an important fact.

For the first definition, we consider the average covering number of the
sphere by disks |z| ≤ r:

A(r, f) =
1

π

∫ r

0

∫ π

−π

|f ′(teiθ)|2

(1 + |f(teiθ)|)2
tdtdθ. (9)

Here 2f ′/(1+ |f |2) is the spherical derivative, and the total spherical area of
the image of the disk |z| ≤ r is divided by the area of the sphere 4π. So for
a rational function we obtain A(∞, f) = deg f .

Unfortunately, this characteristic A(r, f) does not have reasonable behav-
ior with respect to addition and multiplication of functions3

It turns out that a remedy of this defect is an averaging with respect to r:

T0(r, f) =
∫ t

0

A(t, f)

t
dt. (10)

This is called the Nevanlinna characteristic (in the form of Ahlfors–Shimizu).
It has nice algebraic properties which are similar to the properties of the
degree:

T (r, f + g) ≤ T (r, f) + T (r, g) +O(1), (11)

T (r, fg) ≤ T (r, f) + T (r, g) +O(1), (12)

T (r, fn) = nT (r, f) +O(1), (13)

T (r, 1/f) = T (r, f) +O(1). (14)

3The following anecdote is told about V. Arnold. In a lecture he asked the audience:
what is a rational function? Answer: a ratio of two polynomials. Arnold: This is wrong!
You were taught incorrectly! A rational function is a holomorphic map of the sphere
to itself! Question: Professor, could you please explain what is the sum of two rational
functions?
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The error term is considered irrelevant since T (r, f) → +∞ for all non-
constant functions. More precisely, for a rational function of degree d we have
T (r, f) = d log r+O(1) while for every transcendental f , T (r, f)/ log r → ∞.

Exercise. Let f 7→ T (f) be a map from the field of rational functions
to R≥0 satisfying (11)–(14), and T (c) = 0 for every constant. Prove that
T (f) = c deg f for some constant c > 0.

The proof of those algebraic properties directly from the definition (9),
(10) seems is far from trivial. This is does with the help of a different,
equivalent definition, which was the original definition of Nevanlinna.

Let n(r, f) be the counting function of poles of f , counting multiplicity
in the disks |z| ≤ r, then

N(r, f) =
∫ ∞

0
(n(t, f)− n(0, f))

dt

t
+ n(0, f) log r,

and

m(r, f) =
1

2π

∫ π

−π
log+ |f(reiθ)|dθ.

Then the Nevanlinna characteristic is defined as

T (r, f) = m(r, f) +N(r, f). (15)

For this characteristic, properties (11)-(13) are trivial, while (14) is Jensen’s
formula in disguise.

Now a theorem of Ahlfors and Shimizu says that

T (r, f) = T0(r, f) +O(1),

so for most questions it does not matter which form of the characteristic
is used. Now T0(r, f) is invariant with respect to rotations of the sphere,
and almost invariants (up to an O(1) summand) with respect to arbitrary
linear-fractional transformations, so from (15) we obtain

T (r, f) = m(r, (f − a)−1) +N(r, f − a)−1) +O(1),

which is called the First Fundamental Theorem of Nevanlinna. We introduce
the convenient notation

N(r, a, f) = N(r, (f − a)−1), m(r, a, f) = m(r, (f − a)−1),
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and write the First Main Theorem in the form

T (r, f) = m(r, a, f) +N(r, a, f) +O(1).

It is instructive to see what this says about rational functions: the degree is
equal to the number of poles in C plus the multiplicity of a pole at ∞.

So for rational function, m(r, a, f) = O(1) for all a except one. It turns
out that for arbitrary meromorphic function T (r, f) ∼ N(r, a, f) for most
a ∈ C, namely for all a except a set of zero logarithmic capacity. A more
subtle result in the Second Main Theorem of Nevanlinna:

Theorem 8. For every meromorphic function f in the plane, and any finite
set a1, a2, . . . , aq in C, we have

q∑
j=1

m(r, aj, f) +N1(r, f) ≤ 2T (r, f) + S(r, f). (16)

Here N1(r, f) is a function defined similarly to N(r, f) but counting the

critical points of f (including multiplicity), and S(r, f) is a small error term,

S(r, f) = O(log(rT (r, f))), r → ∞, r ̸∈ E,

where E is a set of finite length.

Exercise. Show that N1(r, f) = N(r, 1
f ′ ) + 2N(r, f)−N(r, f ′).

One consequence of (16) is the defect relation. The defect is defined by

δ(a, f) = lim inf
r→∞

m(r, f)

T (r, f)
, and θ(f) = lim inf

r→∞

N1(r, f)

T (r, f)
.

and we have ∑
a∈C

δ(a, f) + θ(a, f) ≤ 2.

Second Main Theorem also implies

T (r, f ′) ≤ 2T (r, f) + S(r, f),

which is analogous to deg f ′ ≤ 2 deg f for rational functions.
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Prior to Nevanlinna theory, the characteristic logM(r, f), whereM(r, f) =
max{|f(z)| : |z|leqr} was used to measure the growth of an entire function.
In the case of entire functions, both characteristics are comparable:

logM(r, f) ≥ T (r, f) = m(r, f) ≥ r − t

r + t
logM(t, f), t < r.

The order and of a meromorphic function f is defined as

ρ(f) = lim sup
r→∞

log T (r, f)

log r
.

If in this definition lim sup is replaced by lim inf we obtain lower order. Using
A(r, f) or, in the case of entire functions logM(r, f) does not affect the order
and lower order.

8. Direct singularities and the Denjoy–Carleman–Ahlfors Theorem

We begin with a general result on direct singularities of a parabolic sur-
face:

Theorem 9. (M. Heins) On a surface of parabolic type, the set of asymptotic
values corresponding to direct singularities is at most countable.

It is not true that the set of direct singularities itself is countable on a
surface of parabolic type: one can have an uncountable set of direct singu-
larities with the same asymptotic values. An example of such a surface was
constructed by M. Heins in [23]. Here is an explicit example of an entire
function with uncountable set of logarithmic singularities with asymptotic
value 0 is

f(z) =
∞∑
k=1

(
z

2k

)2k

,

see [8] for the proof.
Heins’s theorem is derived from the following “Local Picard theorem”:

Theorem 10. (Heins) Let f be a non-constant meromorphic function in a
region D ⊂ C mapping it into a region Ω ⊂ C, such that f is continuous on
D ∪ ∂CD, and maps ∂CDinto∂Ω. Then f cannot omit three values in Ω. If
Ω and D are simply connected then f cannot omit two values.
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Here ∂CD means the boundary with respect to C, while ∂Ω is the bound-
ary in C, as usual.

Proof. The first step reduces the theorem to the case that D and Ω are
simply connected. Let Ω1 be a Jordan region, whose closure is contained in
Ω, and such that {a, b} ∈ Ω1 but c ∈ Ω\Ω1. Suppose also that ∂Ω1 contains
no critical values of f . Let D1 ⊂ D be a component of f−1(Ω1). Then
D1 is bounded by disjoint simple curves, and is Ω1 unbounded. (Otherwise
f : D1 → Ω1 would be a covering which contradicts the assumption that it
omits {a, b} ⊂ Ω1).

We claim that D1 is simply connected. To prove the claim, assume the
contrary. Then ∂D1 contains a Jordan curve γ on which f is continuous
and maps it into ∂Ω1. If any part of ∂D lies inside γ, then f is continuous
on this part and maps it into ∂Ω. So if we denote the interior component of
Γ by G, then f maps G ∩ D into Ω\Ω1 and ∂(G ∩ D) into ∂(Ω\Ω1, so the
restriction of f onto G∩D is a covering, and this contradicts the assumption
that f omits c.

So it remains to prove the last statement of the theorems (the case when
Ω and D are simply connected and f : D → Ω omits two values. We may
assume without loss of generality that ∂CD and ∂Ω are smooth curves (shrink
Ω if necessary). Let ϕ : U → D be a uniformizing map, and ψ : Ω → U
a Riemann map. Then g = ψ ◦ f ◦ ϕ maps the unit disk into itself, and
according to a theorem of Beurling, there is a closed set E ⊂ ∂U of zero
capacity, such that g is continuous on every arc ∂U\E and maps this arc into
∂U . Let δ : U → U\{a, b} be the universal cover. This universal cover can be
explicitly described, and the limit sets F of the corresponding Fuchsian group
has positive capacity (even positive Hausdorff dimension), see, for example
[19]. By the universality of δ, there exists a function h : U → U such that
g = δ ◦ h. Using reflection in the arcs ∂U\E of the unit circle where |g| = 1
and thus |h| = 1 we extend g and δ ◦ h to a map C\E → C\F . Since E has
zero capacity and F has positive capacity, this is a contradiction. (One can
also use Hausdorff dimension to obtain this contradiction, see, for example
[37]).

The next two results concern meromorphic functions of finite order.

Theorem 11. For a meromorphic function in the plane of finite lower order
λ, the number of direct singularities is at most

min{2λ, 1}.
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This is usually called the Denjoy–Carleman–Ahlfors theorem, though
Beurling also had an independent claim, so the proper name would be ABCD-
Theorem. There are two different proofs: one is based on potential the-
ory (Carleman’s inequality), another on the Ahlfors’s distortion theorem.
Both proofs have their advantages. Potential theoretic proof allows multi-
dimensional generalizations, while the conformal mapping proof permits to
improve the result in the plane by taking into account the spiraling behav-
ior of the tracts. Because of the great importance of both methods, we will
discuss both proofs.

A simple example of indirect singularities is the two singularities that
(C, (sin)/z) has over 0. In this example, the indirect singularities are accu-
mulation points of critical point. This is not always so:

Example. (Volkovyskii) Let E be a Cantor set on the unit circle. We start
with the unit disk, and to each complementary interval (a, b) we attach a
logarithmic end with asymptotic values a, b. The resulting surface has no
critical points at all, and the set of singularities has the power of continuum:
they lie over every point of E. By choosing very small E, one can achieve
parabolic type. One can construct a similar example spread over the plane
by starting with a star consisting of all rays from zero through the comple-
mentary points of the Cantor set, and attaching logarithmic ends to the part
of every ray from an endpoint of the Cantor set to infinity.

However it turns out that for functions of finite lower order, all indirect
singularities are indeed accumulation points of critical points:

Theorem 12. (Bergweiler–Eremenko-Hinchlif) For a meromorphic function
in the plane of finite lower order, every indirect singularity over a point a is
a limit of critical points whose critical values are distinct from a.

This theorem is useful since it implies existence of infinitely many critical
points in certain situations. See, for example, section 9, where all functions
of finite lower order with only direct singularities are completely described.

9. Speiser class

9.1.Let S be the Speiser class of meromorphic functions C → C. This means
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that there exists a finite set A such that

f : C\f−1(A) → C\A (17)

is a covering. If |A| = q we will say that f ∈ Sq. It is intuitively clear that
the elements of A can serve as local parameters for f . To make this precise,
we fix a function g ∈ S and define Mg as the set of all functions f : C → C
which are topologically equivalent to g in the sense that homeomorphisms
ϕ : C → C and ψ : C → C such that

ψ ◦ g = f ◦ ϕ. (18)

We assume that the set A is minimal for which (17) is a covering. We
will show that Mg is a complex analytic manifold of dimension q + 2.

Choose β1 and β2 such that g(βj) is not a singular value of g. Let
Mg(β1, β2) be the set of functions f for which the homeomorphisms in (18)
can be chosen so that ϕ(βj) = βj. One can easily check thatmg = ∪β1,β2Mg(β1, β2).
Let A = (a1, . . . , aq) and g(β1) = aq+1, g(β2) = aq+2. We will show that
(a1, . . . , aq+2) are local coordinates in the chart Mg(β1, β2) of Mg.

Lemma. For j ∈ {0, 1} let

ψj ◦ g = fj ◦ ϕj, ϕj(bi) = βi, i ∈ {1, 2}.

Assume that there exists an isotopy ϕt connecting ψ0 and ψ1, and such that
ψt(ak) = ak for 0 ≤ t ≤ 1 and 1 ≤ k ≤ q + 2. Then f0 = f1.

Proof. By the Covering Homotopy Theorem, there exists a continuous
family of homeomorphisms ht such that h1 = ϕ1 and ψt◦g = f1◦ht, 0 ≤ t ≤ 1.
The functions t 7→ ht(βi) are continuous and their values are in a discrete
set, therefore ht(βi) = βi. Putting t = 0, we obtain f0 ◦ϕ0 = ψ0 ◦ g = f1 ◦h0,
thus f0 = f1 ◦ h0 ◦ ϕ−1

0 . The homeomorphism h0 ◦ ϕ−1
0 of the plane has two

fixed points and is conformal outside a discrete set. Therefore it is identity
and f0 = f1.

Let us now define an analytic structure onMf (β1, β2). Consider the space
Y of homeomorphisms C → C modulo the following equivalence relation:
ψ0 ∼ ψ1 if there exists an isotopy ψt : C → C such that ψt(ak) = ak, 0 ≤ t ≤
1, 1 ≤ k ≤ k+2. The map Y → Cq+2 ψ 7→ (ψ(a1), . . . , ψ(aq+2) being a local
homeomorphism defines on Y the structure of a complex analytic manifold of
dimension q + 2. Let us construct a map π : Y → Mg(β1, β2). Observe that
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every element of Y can be represented by a quasiconformal homeomorphism.
Consider the map ϕ ◦ g, where ψ is a quasiconformal representative. By
the Measurable Riemann theorem, there exists a homeomorphism ϕ : C →
C such that ϕ(βi) = βi and ψ ◦ g ◦ ϕ = f is analytic. Let π(ψ) = f .
Then π is correctly defined (by the Lemma), and singular values of f are
ψ(a1), . . . , ψ(aq).

Notice that π is surjective and locally injective. So π indices a complex
analytic structure on Mg(β1, β2).

Let us show that the map

Mg ×C → C, (f, z) 7→ f(z)

is complex analytic. To prove this we apply the operator ∂/∂λ to the equation

ψλ ◦ g = fλ ◦ ϕλ.

Since ψλ is holomorphic, we obtain

∂fλ

∂λ
= −∂fλ

∂z

∂ϕλ

∂λ
= 0,

the last inequality holds because ψλ is holomorphic in λ.

References

[1] L. Ahlfors, Sur le type de surface de Riemann, C. R., 201 (1935) 30–32.
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