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Abstract

Asymptotic distribution of zeros of sequences of analytic functions

is studied.

Let fn be a sequence of analytic functions in a region D in the complex
plane. The case of entire functions, D = C will be the most important. Sup-
pose that there exist positive numbers Vn → ∞, such that the subharmonic
functions

1

Vn
log |fn| are uniformly bounded from above (1)

on every compact subset of D, and for some z0 ∈ D the sequence

1

Vn
log |fn(z0)| is bounded from below. (2)

Under these conditions, one can select a subsequence such that for this sub-
sequence

1

Vn
log |fn| → u, (3)

where u is a subharmonic function in D, u 6= −∞. This convergence can be
understood in various senses, for example, quasi-everywhere, which means at
every point except a set of points of zero logarithmic capacity, and also in
D′ (Schwartz distributions), or in Lploc, 1 ≤ p <∞.

The corresponding Riesz measures converge weakly. The limit measure,
which is (2π)−1∆u, describes the limit distribution of zeros of fn.
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For all these facts we refer to [9] or [10].
This setting is useful in many cases when one is interested in asymptotic

distribution of zeros of sequences of analytic functions.
Let us mention several situations to which our results apply.

1. Let fn be monic polynomials of degree n, and Vn = n. We denote
by µn the so-called empirical measures, which are the Riesz measures of
(1/n) log |fn|. The measure µn is discrete, with finitely many atoms, with an
atom of massm at every zero of fn of multiplicitym. So the µn are probability
measures in the plane. Therefore, one can always choose a subsequence for
which µn → µ, where µ is some measure in the plane. The sequence of
potentials will converge:

1

n
log |fn| → u =

∫

|ζ|≤1
log |z − ζ|dµ(ζ) +

∫

|ζ|>1
log |1 − z/ζ| dµ(ζ) + C.

2. Let f be an entire function, f(0) 6= 0, and

M(r, f) = max{|f(z)| : |z| = r} (4)

its maximum modulus. Suppose that for some sequence rn → ∞ we have

logM(2rn, f) = O(logM(rn, f)), n→ ∞.

Then the functions fn(z) = f(rnz) satisfy (1) and (2) with Vn = logM(rn)
and z0 = 0.

3. The order of an entire function is defined by

ρ = lim sup
r→∞

log logM(r, f)

log r
.

An entire function of finite order is said to be of normal type if

lim sup
r→∞

logM(r, f)

rρ
<∞.

If f is of finite order and normal type, f(0) 6= 0, and rn is any sequence
tending to infinity, then one can take fn(z) = f(rnz), and Vn = rρn, and the
properties (1) and (2) (with z0 = 0) will hold.
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Such sequences of subharmonic functions were applied to the asymptotic
study of zeros in many papers. Of the early ones, we mention [4]. See also
[1], [2], [3], [5], [11], [12], [13] and literature in these books and papers.

The purpose of this note is to state and prove two general facts about
this convergence, and give several applications. There is no claim of novelty
of the main results or their proofs, our only goal is to bring these general
facts to the attention of a wider audience, as on our opinion they deserve.

The result of section 3 was found in the 1990s jointly with M. Sodin. This
section is independent on section 1.

I thank M. Sodin, A. Rashkovskii and D. Novikov for useful discussions.

1 Maximum modulus and coefficients

In this section the functions fn are defined and analytic in a disc D = {z :
|z| < R} where 0 < R ≤ ∞, and we assume (1), (2) and (3).

LetM(r, fn) be the maximum modulus, andB(r) = B(r, u) = max|z|=r u(z),
then we have logM(r, fn)/Vn → B(r), n→ ∞. This convergence is uniform
on every interval [0, r0] with r0 < R. Let

Φ(t) = B(et), −∞ < t < logR.

Suppose that

fn(z) =
∞
∑

k=0

an,kz
k, (5)

and let

ψn(x) = sup
convex ψ

{

ψ : ψ

(

k

Vn

)

≤ −
log |an,k|

Vn

}

.

Here the sup is taken over all convex functions ψ on the real line. To check
that the class is not empty, we use the assumption that our functions fn are
analytic in some disc centered at 0 which implies that log |an,k| ≤ Cnk, so
ψ(x) = −Cnx is in the class.

It is convenient to consider all convex functions as defined on the whole
real line and taking values in (−∞,+∞]. A convex function with finite values
on a half-line or on an interval (closed, open, semi-open) can be always
extended to the whole real line by setting it equal to +∞ at every point
outside this interval.
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The set where a convex function is finite is always convex (but can be
neither open nor closed). Then pointwise sup of any family of convex func-
tions is convex, and the limit of decreasing sequence of convex functions is
convex if finite at least at one point. Thus our functions ψn are convex.

The set where a convex function is discontinuous can consist of at most
two points, the endpoints of the interval where it is finite. Lower semi-
continuous regularization is still convex and differs from the original function
at at most 2 points. We always assume our convex functions to be lower semi-
continuous, making this regularization when necessary.

Theorem 1. Suppose that (3) holds. Then ψn → φ > −∞, and φ is the
Legendre transform of Φ,

φ(x) = sup
t

(tx− Φ(t)).

Conversely, if lim infn→∞ ψn = φ > −∞, then (1) holds and one can choose
a subsequence for which (3) holds, and ψn → φ, and Φ and φ are related by
the Legendre transform.

Proof. First we recall that Legendre’s transform is defined for convex
functions of the real line. The Legendre transform is always a convex, lower
semi-continuous function. The transform is order-reversing: f ≥ g implies
L(f) ≤ L(g). Finally, the Legendre transform is an involution, L ◦ L = id.

We have by Cauchy inequality

|an,k|r
k ≤M(r, fn),

Applying log, dividing by Vn, and writing log r = t, we rewrite this as

− log |an,k|

Vn
≥ sup

t

(

k

Vn
t−

1

Vn
logM(et, fn)

)

.

We set set x = k/Vn, and as the RHS is convex in x, we obtain that

ψn(x) ≥ sup
t

(

xt− logM(et, fn)
)

/Vn.

We pass to the limit when n→ ∞ while x is fixed, and obtain

φ(x) ≥ sup
t

(xt− Φ(t)). (6)
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Now we need an estimate in the opposite direction. Let us first give the
estimate for the important special case when fn are polynomials of degree
n, and Vn = n. In this case our argument is very simple. We start with the
trivial inequality

nmax
k

|an,k|r
k ≥M(r, fn). (7)

Taking logs, and substituting log r = t, we obtain

max
k

(kt+ log |an,k|) ≥ logM(et, fn) − log n.

Dividing by Vn = n and passing to the limit as n → ∞ with our usual
arrangement that k/n = x, we obtain

max
x

(xt− φ(x)) ≥ Φ(t). (8)

Now, Legendre’s transform is an involution, and order reversing. So our two
inequalities imply the equality: φ and Φ are Legendre transforms of each
other.

Returning to the general case, we need a substitute for (7). This is
provided by rudimentary Wiman–Valiron theory, which we recall. Let

f(z) =
∞
∑

k=0

akz
k

be a power series with radius of convergence R ≤ +∞. For every r ∈ [0, R),
we introduce the maximal term

m(r, f) = max
k

|ak|r
k,

and the central index ν(r) as the largest integer for which

m(r, f) = |aν(r)|r
ν(r).

For 0 < r < r1 < R, we have

ν(r) log
r1
r

≤ logm(r1) − logm(r). (9)

For our functions fn as in (5), notice the relation

1

Vn
logm(et, fn) = max

x
(xt− ψn(x)) = L(ψn)(x). (10)
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Lemma 1. (Valiron). For every r and r1 such that

0 ≤ r < r1 < R,

we have

M(r, f) ≤ m(r1, f)
(

ν(r) +
r1

r1 − r

)

. (11)

Proof.

M(r, f) ≤
∞
∑

k=0

|ak|r
k

≤ m(r, f)ν(r) +
∞
∑

k=ν(r)+1

|ak|r
k
1

(

r

r1

)k

≤ m(r1, f)ν(r) +m(r1, f)
r1

r1 − r
.

This is a sufficient substitute for (7) for our purpose.
Combining (9) and (11), we obtain

M(r, fn) ≤ m(r1, fn)

(

logm(r1, fn) − logm(r, fn)

log r1 − log r
+ log r1 − log(r1 − r1)

)

.

Taking logarithms, dividing by Vn and passing to the limit as n → ∞, we
take into account that

lim
n→∞

(logm(r, fn))/Vn = L(φ)(log r),

and obtain that
Φ(t) ≤ L(φ)(t′),

which holds for every t < t′. As both sides are continuous, we conclude that

Φ ≤ L(φ)

which is (8). This completes the proof.

Theorem 1 gives an asymptotic connection between the maximum mod-
ulus and coefficients.

There is one interesting case when the function B(r) completely deter-
mines the limit zero distribution µ.
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Proposition. Suppose that the function z 7→ B(|z|, u) is piecewise-harmonic
in {z : |z| < R} in the following sense: there exists a closed nowhere dense
set E ⊂ (0, r) such that for every component I of (0, R)\E, we have

B(r, u) = aI log r + bI , r ∈ I,

and B(r, u) = const for sufficiently small r. Then u(z) = B(|z|, u), |z| < R.

For example, if B(r, u) = log+ r then u(z) = log+ |z|. We conclude that µ
is the uniform distribution on the unit circle if and only if B(r, u) = log+ |z|.
The corresponding functions are Φ(t) = t+, −∞ < t < +∞, and φ(x) =
0, 0 ≤ x ≤ 1.

We obtain necessary and sufficient conditions, in terms of the coefficients,
for the zeros to be uniformly distributed on the unit circle. For simplicity,
we state it only for sequences of polynomials.

Corollary. Let

fn =
n
∑

k=0

an,kz
k

be a sequence of polynomials, and µn the empirical measures of fn. Then
µn converge weakly to the uniform probability measure on the unit circle, as
n → ∞, if and only if the following condition holds. For every ǫ > 0 there
exists nǫ, such that for every n > nǫ we have

max
k∈[0,n]

log |an,k| − max
k∈[0,ǫn]∪[(1−ǫ)n,n]

log |an,k| ≤ ǫn. (12)

An equivalent result was recently obtained by Fernandez [7].
For example, condition (12) holds if all coefficients are uniformly bounded

from above, while |an,0| and |an,n| are bounded from below.
To prove the Proposition we notice that on any complementary interval I,

U(z) := aI log |z|+ bI is a harmonic majorant of u, and u(z) = U(z) for some
point inside the ring {z : |z| ∈ I}. So my the maximum principle u = U .

2 Applications of the previous results

Example 1. (Jentzsch) Let f be a power series with radius of convergence 1
and fnk

a sequence of partial sums such that |ank
|1/nk → 1. Then fnk

satisfy
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the assumptions of the Proposition, and we obtain a theorem of Jentzsch
that zeros of fnk

are asymptotically uniformly distributed on the unit circle.

Example 2. Asymptotic distribution of zeros of a Ruelle zeta-function [6].
This zeta function is related to the dynamical system z 7→ pc(z) = z2 + c,
where c is a real parameter. The zeta function is

Fc(z) = 1 +
∞
∑

k=1

zk

pc(0) . . . p∗nc (0)
,

where p∗nc is the n-th iterate of pc. For c < −2, we have a real one-parametric
family of entire functions. Zeros of these functions are eigenvalues of a Ruelle
operator. Let V (c) be the smallest positive integer n, for which p∗(n+1)

c /p∗nc ≥
36. By analyzing Taylor’s coefficients of Fc, it was shown in [6] that

1

V (c)
logM(Fc, r) → log+(r/2), c→ −2, r > 0.

Therefore, the Proposition with R = ∞ implies that the limit distribution
of zeros is the uniform measure on the circle |z| = 2.

Similar arguments apply to the entire function

Ha(z) =
1

a

∞
∑

n=0

a2n

zn, 0 < a < 1,

studied by Hardy [8]. As a → 1−, the limit distribution of zeros is the
uniform measure on the unit circle.

Example 3. The results about this example were first obtained by Alan
Sokal and Alexander Scott (2005, unpublished).

Consider the polynomials

Cn(y) =
n(n−1)/2
∑

k=n−1

cn,k(y − 1)k,

where cn,k is the number of simple connected graphs with k edges on n labeled
vertices. Tutte [15] discovered the following identity for the the exponential
generating function of Cn:

∞
∑

n=1

Cn(y)x
n/n! = logF (x, y), (13)
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where

F (x, y) =
∞
∑

n=0

yn(n−1)/2xn/n!.

This series F represents an entire function of x for |y| ≤ 1. It is of order
zero when |y| < 1, and thus it has roots. If x0(y) is the root of the smallest
modulus, then the series in the left hand side of (13) is convergent for |x| <
|x0(y)|.

From the formula for the radius of convergence, we obtain

lim sup
n→∞

n−1 log |Cn(y)/n!| = − log |x0(y)|, |y| < 1.

In it not difficult to prove that actually the limit exists

lim
n→∞

n−1 log |Cn(y)/n!| = − log |x0(y)| for |y| < 1. (14)

This relation justifies the need to study the function y 7→ x0(y). For a
survey of known results and many conjectures about this function we refer
to [14].

From the definition of Cn we infer that these are monic polynomials of
degree dn = n(n− 1)/2. So

un(y) := d−1
n log |Cn(y)/n!| = d−1

n

n(n−1)/2
∑

k=0

log |y − yk| + cn

=
∫

log |y − w|dµn(w) + cn,

where µn is the empirical measures of Cn, and cn ∼ (log n!)/dn are constants
tending to zero. From the combinatorial definition one can compute the
values Cn(0) = (−1)n−1(n− 1)!. Thus

lim
n→∞

un(0) = 0. (15)

Equation (14) implies convergence un → u, where u is the potential of the
limit measure µ of empirical measures.

As the plane is not compact, the limit measure µ can á priori have smaller
total mass than 1, but we will see that this does not happen in our situation:
the zeros of Cn do not escape to ∞.

We have un → u, where

u(y) =
∫

log |y − w|dµ(w), µ(C) ≤ 1. (16)
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Equation (14) implies that

u(y) ≤ 0, for |y| < 1. (17)

On the other hand, (15) implies that u(0) ≥ 0, so, by the Maximum Principle,

u(y) = 0 for |y| < 1. (18)

By a well-known property of subharmonic functions, this implies

u(y) = 0 for |y| ≤ 1. (19)

On the other hand, from (16) follows that u(y) ≤ log |y|+o(1) as y → ∞, and
together with (19) this implies that for every ǫ > 0, the function (1+ǫ) log |y|
is a harmonic majorant of u in the annulus 1 < |y| <∞. So we have

u(y) ≤ log+ |y|, for all y ∈ C. (20)

We already know that equality holds in the unit disc. To show that it holds
everywhere, we produce a lower estimate as follows. From Cauchy’s inequal-
ity

2dn ≤M(2, Cn) := max
|y|=2

|Cn(y)|,

and it follows that M(2, u) ≥ log 2. Thus we have equality in (20) at some
point y1, with |y1| = 2. By the Maximum Principle, applied to the ring
1 < |y| <∞ we have equality in (20) everywhere, that is

u(y) = log+ |y|. (21)

This implies that µ = (2π)−1∆u is the uniform distribution on the unit circle,
in particular µ is a probability measure in C as advertised above. Moreover,
µn tends to the uniform distribution on the unit circle.

3 Asymptotic behavior of derivatives

In tis section, D is an arbitrary region in the complex plane, and fn ana-
lytic functions in D. Suppose that the sequence of subharmonic functions
(log |fn|)/n converges:

1

n
log |fn| → u.
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Then one can choose a subsequence such that

1

n
log |f ′

n| → v.

We fix a sequence for which both limits hold.

Theorem 2. Under the stated conditions, v ≤ u, and if at some point
v(z0) < u(z0), then there is a neighborhood V of z0 such that u is constant
on V .

Proof. For every subharmonic function w and ǫ > 0 we define

wǫ(z) = max
ζ:|ζ−z|≤ǫ

w(ζ).

Then wǫ is a decreasing sequence of subharmonic functions, and for every z,
w(z) ≤ wǫ(z) → w(z) as ǫ→ 0.

Choose an arbitrary z0 ∈ D. Cauchy’s estimate gives

|f ′
n(z)| ≤ ǫ−1|fn|2ǫ(z0), |z − z0| < ǫ.

Taking logs, dividing by n and passing to the limit, we conclude that

vǫ(z0) ≤ u2ǫ(z0).

This holds for every sufficiently small ǫ > 0, so passing to the limit when
ǫ→ 0, we obtain v(z0) ≤ u(z0).

To prove the second statement of the Theorem, we fix z0 ∈ D, and suppose
that

u(z0) − v(z0) = 5δ > 0. (22)

By upper semi-continuity of v0, there exists a disc V2r of radius 2r centered
at z0, such that

v(z) < v(z0) + δ, z ∈ V2r.

this implies that there exists n0 such that for n > n0 we have

log |f ′
n(z)| ≤ n(v(z0) + 2δ), z ∈ Vr. (23)

Consider the set

E = {z ∈ Vr : u(z) ≥ u(z0) − δ}.
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This set is non-empty because it contains z0, and it has positive area.
According to a theorem of Azarin [1], the set

{z ∈ Vr : |u(z) − (log |fn|)/n| > δ}

can be covered by a countable set of discs with the sum of radii tending to 0
as n→ ∞. This means that for n sufficiently large, there exist points zn ∈ E
such that

|fn(zn)| ≥ n(u(z0) − 2δ). (24)

Now for z ∈ Vr we have in view of (23):

||fn(z)| − |fn(zn)|| ≤ |fn(z) − fn(zn)| ≤ 2ren(v(z0)+2δ).

This gives in view of (24) and (22) that

log |fn(z)| = log |fn(zn)| + log
(

1 + 2re−nδ
)

= log |fn(zn)| + o(1),

which implies that u is constant in Vr.

Example 4. Let Pn be polynomials of degree n and µn their empirical
measures. Suppose that µn → µ weakly, where µ is a Borel measure in the
plane.

If the complement of the closed support of µ does not have bounded com-
ponents, then the empirical measures µ′ describing the distribution of critical
points of Pn converge to the same measure µ.
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(1939) 173–275.

12



[5] A. Eremenko, Value distribution and potential theory, Proceedings of
the International Congress of Mathematicians, vol. 2, p. 681-690, Higher
Education Press, Beijing, 2002.

[6] A. Eremenko, G. Levin and M. Sodin, Distribution of zeros of Ruelle’s
zeta-function, Comm. Math. Phys, 159, 3 (1994), 433-441.

[7] J. Fernandez, Zeros of sections of power series: deterministic and random,
arXiv:1507.02843.

[8] G. H. Hardy, On the zeroes of a class of integral functions, Mess. Math.
34 (1905) 97–101.
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