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1-5. In [21, 22, 23, 17, 18], the authors investigate the existence of
conformal metrics of constant positive curvature on the sphere with n ≥ 4
prescribed conical singularities. The similar problem with metrics of non-
positive curvature was solved in the 19th century by E. Picard. Definitions
and general background are given in Project Description. The difficulty of
the problem depends on the number of conical singularities with non-integer
angles. Such metrics satisfying the symmetry condition have been classified
in the following cases: two non-integer angles [21, 22], three non-integer
angles [23], and n = 4 with all angles half-integer [17, 18].

6. The problem of classification of metrics of positive curvature with
one conical singularity on a torus was recently reduced by Chang-Shou Lin
and his collaborators [34] to a question about Green’s function. Green’s
function on a torus is defined as a solution of the equation ∆u = −δ0+const,
where δ0 is a delta-function, and the question is how many critical points
can it have. The answer was obtained in [34]: 3 or 5, depending on the
modulus of the torus. Their argument is extremely complicated and uses
advanced non-linear PDE theory. We obtained a simpler proof by using
elementary holomorphic dynamics. Relevance of holomorphic dynamics to
this question is quite unexpected. Our proof gives an explicit description
of the two regions on the moduli space of tori where the number of critical
points is constant. An unexpected outcome of this argument is an example
of a one-dimensional holomorphic dynamical system whose parameter space
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consists of just two hyperbolic components and an analytic curve separating
them.

7. The goal of the paper [11] was to improve the Second Main Theorem
(SMT) of H. Cartan on holomorphic curves in complex projective space.
Since the inception of Nevanlinna theory it has been speculated that the
SMT must be an asymptotic equality, rather than an inequality. For the
original SMT of Nevanlinna (that is in dimension 1), such an improvement
was achieved by K. Yamanoi [46]. In this paper, the PI slightly generalizes
Cartan’s SMT and shows that indeed an asymptotic equality holds in a broad
class of holomorphic curves, defined by a certain regularity condition. It is
conjectured that one can get rid of the extra regularity condition, and that
the modified SMT proposed in this paper holds as an asymptotic equality
for all holomorphic curves.

8-9. The papers [2] and [24] contain an answer to the question of
O. Zeitouni and S. Ghosh [26] on asymptotic distribution of zeros of poly-
nomials with positive coefficients. The question arises in the study of the
Law of large deviations for random polynomials. In the first paper we com-
pletely characterize the so called “empirical measures” of polynomials with
positive coefficients. In the second paper we improve the classical inequal-
ity of Obreschkoff (1923) on the distribution of zeros of polynomials with
positive coefficients and show that our result is best possible.

10. In [12], the PI gives a short proof of the so-called BMV conjecture
previously established by H. Stahl [39]. This conjecture comes from mathe-
matical physics, and states that if A,B are two Hermitian matrices and B
is positive definite, then the function t 7→ trace exp(A + Bt) is a Laplace
transform of a positive measure.

11. A domain D with smooth boundary in the plane is called exceptional
if there is a positive harmonic function in D which is zero on the boundary
and whose normal derivative is constant on the boundary. Such domains
were recently completely classified by Khavinson, Lundberg, Theodorescu
and Traizet [44]. In [25], we relax the condition by requiring that the normal
derivative is constant on each component of the boundary, and obtain a
preliminary classification of such domains by reducing the problem to a
problem about Abelian integrals. We also find new examples. Such domains
are related to several problems on quadrature domains, minimal surfaces
and fluid dynamics. E. Lundberg was a postdoc at Purdue University in
2011–2014.

12-13. In [4] we disprove the 34 years old conjecture of S. Bank and I.
Laine on the zeros of solutions of the differential equation w′′ + Aw = 0,
where A is entire and transcendental. The conjecture was that the exponent
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of convergence of zeros of the product of two linearly independent solutions
must be infinite unless the growth order of A is an integer. The conjecture
has attracted a considerable interest; it was generally believed that it is
true, but it has been proved only under very strong additional conditions
on A. We employ a novel geometric technique to investigate the problem,
and construct counterexamples. In the second paper on this subject, [5]
we extend our technique, and show that all principal partial results on the
conjecture are actually best possible.

14. In [6] we address the question asked by G. Gundersen [27]: does
there exist an entire function with infinitely many zeros and infinitely many
1-points, such that zeros lie on the positive ray, and 1-points lie on two other
rays? Among other things, we show that if such a function exists, the “other
rays” must be of the form {z : arg z = ±α}, where 0 < α < π/2, but the
most surprising result is that such functions indeed exist when α ∈ (0, π/3]
and when α = 2π/5. It turns out that the problem is closely related to a
class of functional equations satisfied by Stokes’ multipliers of some linear
differential equations. The same functional equations arise in the integrable
models of statistical mechanics [9]. It is a challenge to find out what happens
for the remaining range of α; this will be addressed in Project Description.

15. For general information on the Painlevé VI equation, see Project
Description. A solution w(z) is called exceptional if w(z) 6∈ {0, 1, z,∞}
for z ∈ C\{0, 1}. In [19], we give a complete classification of exceptional
solutions and the Painlevé VI equations that can have such solutions. This
extends recent results in [7] where one special case is considered.

16–17. Paper [12] contains a discussion of some unsolved problems of
real algebraic geometry and differential equations, based on the previous
results of PI and co-PI. Paper [16] is a survey of the results of PI and co-PI
from the research funded by NSF in 2011–2014.

Broader impact of the PI and co-PI activities. The results of PI
found applications to the theory of random polynomials.

Human resources development. A. Eremenko served on PhD examination
committees of

Alex Dyachenko (Technische Universität Berlin, January 2016),
Simon Albrecht (Christian-Albrecht Universität, Kiel, August 2015),
Samuel Roth (Indiana University–Purdue University in Indianapolis

(IUPUI), 2015), and
Thomas Bothner (IUPUI, 2013).
A. Eremenko has taught two mini-courses for graduate students and

young researchers: In Kent University in March 2015 (Informal Analysis
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Seminar organized by F. Nazarov with a support from NSF, Lecture notes
are posted on the web site of A. Eremenko at Purdue University. in Lviv
University (Ukraine) in May 2016 (Lecture notes are in preparation). Both
courses were based on the NSF-sponsored research of PI.

A. Eremenko continues collaboration with his former postdoc Eric Lund-
berg, and with his former PhD student Koushik Ramachandran.

A. Gabrielov advises a postdoctoral scholar Edinah Gnang, who was in-
volved in some parts of the research funded by NSF. Dr. Gnang is completing
his 3-year appointment at Purdue in Spring 2017, and has been offered a
tenure-track assistant professor position at Johns Hopkins University start-
ing July 2017. A. Gabrielov is currently serving on the PhD committees of
K. Grady (Purdue), and D. Petrovic and B. Elwood (IUPUI).

Results of the recent joint work of A. Eremenko and A. Gabrielov were
presented at several international conferences, including a lecture by
A. Gabrielov at the Fields Institute in Toronto, Canada, on August 3, 2016,
which was live-streamed, and a video has been posted on the Web site of
the University of Toronto.

Enhancing infrastructure for research and education and increasing pub-
lic scientific literacy and public engagement with science and technology.

Three of the publications listed above (6,11,17) are surveys, expositions
or discussions of unsolved problems aimed at the general audience of math-
ematicians and physicists.

The PI maintains a web page, which contains various resources like lists
of unsolved problems for beginning researchers, surveys, popular and ad-
vanced lectures, essays and problems on mathematical, scientific and engi-
neering topics by the PI, list of free resources of mathematical literature,
and so on. The PI receives a substantial feedback on this web page. Some
materials from this web page were used in the scientific programs of the
mass media.

The PI is active in the mathematical web sites MathOverflow and His-
tory of Science and Mathematics, which have very large and diverse set of
participants. He writes Wikipedia articles on the subjects related to his
research areas (user name: Pym1507).

Publications resulting from the NSF award.

1. A. Eremenko, A. Gabrielov and V. Tarasov, Metrics with conic singular-
ities and spherical polygons, Illinois J. Math., 58, 3 (2014) 739-755.
2. A. Eremenko, A. Gabrielov and V. Tarasov, Metrics with four conic sin-
gularities and spherical quadrilaterals, Conformal Geometry and Dynamics,
20 (2016) 28–175.
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3. A. Eremenko, A. Gabrielov and V. Tarasov, Spherical quadrilaterals with
three non-integer angles, Journal of Math. Phys., Analysis and Geometry,
12 (2016) 2, 134-167.
4. A. Eremenko and A. Gabrielov, On metrics of curvature 1 with four sin-
gularities on tori and on the sphere, submitted, arXiv:1508.06510.
5. A. Eremenko and A. Gabrielov, Spherical rectangles, arXiv:1601.04060,
accepted for publication in Arnold Math. Journal.
6. W. Bergweiler and A. Eremenko, Green functions and antiholomorphic
dynamics on tori, Proc. AMS, 144, 7 (2016) 2911-2922.
7. A. Eremenko, On the second main theorem of Cartan, Ann. Acad. Sci.
Fenn., 39 (2014) 895-871. Correction: vol. 40, 1 (2015).
8. W. Bergweiler and A. Eremenko, Distribution of zeros of polynomials
with positive coefficients, Ann. Acad. Sci. Fenn., 40 (2015) 375-383.
9. A. Eremenko and A. Fryntov, Remarks on Obrechkoff’s inequality, Proc.
AMS, 144, 2 (2016) 703-707.
10. A. Eremenko, Herbert Stahl’s proof of the BMV conjecture, Mat. Sbornik,
206, 1, (2015) 87–92.
11. A. Eremenko and E. Lundberg, Quasi-exceptional domains, Pacific J.
Math., 276, 1 (2015) 167-183.
12. W. Bergweiler and A. Eremenko, On the Bank–Laine conjecture, ac-
cepted in J. European Math. Soc., arXiv:1408.2400.
13. W. Bergweiler and A. Eremenko, Quasiconformal surgery and linear
differential equations, submitted, arXiv:1510.05731
14. W. Bergweiler, A. Eremenko and A. Hinkkanen, Entire functions with
two radially distributed values, submitted, arXiv:1509.03283.
15. A. Eremenko, A. Gabrielov and A. Hinkkanen, Exceptional solutions to
the Painlevé VI equation, submitted, arXiv:1602.04694.
16. A. Eremenko, Disconjugacy and secant conjecture, Arnold Math. J.,1
(2015) 3, 339-342.
17. A. Eremenko and A. Gabrielov, Spectral loci of Sturm–Liouville opera-
tors with polynomial potentials, In: Spectral Theory and Differential Equa-
tions. V. A. Marchenko 90th Anniversary Collection, Editors: E. Khruslov
and L. Pastur, AMS Transl., 233 (2014) 135-143.

Evidence of research products and their availability. All 17 pa-
pers listed above are freely available on the arXiv. In addition, all of them
are either published, or accepted for publication, or submitted for publica-
tion in the refereed mathematical journals.
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PROJECT DESCRIPTION

Geometric methods in the analytic theory of differential

equations

1. Real solutions of the Painlevé VI equation

Painlevé VI equation (PVI) is the following second order ODE:
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where (κ1, . . . , κ4) are parameters, and q(x) is the solution. The first re-
markable property of PVI is that all solutions are meromorphic in the twice
punctured plane C\{0, 1}, so it is an equation “without movable singulari-
ties”. All equations of the form

y′′ = R(y′, y, x) with R rational in y′, y, meromorphic in x,

with no movable singularities have been classified by Painlevé and Gambier
in the beginning of 20th century; most of them can be reduced to linear
ODE, and the rest to the six equations which are called Painlevé equations.
Of those six, PVI is the most general one in the sense that the rest can be
derived from it by certain limiting processes.

Independently of Painlevé and Gambier, and almost simultaneously, PVI
was discovered by R. Fuchs, as the equation governing the isomonodromic
deformation of a linear ODE

w′′ + P (z)w′ +Q(z)w = 0 (2)

with five regular singularities at 0, 1, x, q,∞, such that the exponent differ-
ences at the singularities (0, 1, x,∞) are κj , while q is an apparent singularity
with the exponent difference 2. If one varies x so that the monodromy of
(2) remains unchanged, q must be a function of x, and this function must
solve (1). All solutions of PVI are obtained in this way.

Since these discoveries of the early 20th century, the Painlevé equations
have been intensively studied, and many important applications have been
found in mathematics and physics. Their solutions, Painlevé transcendents,
are gradually gaining the status of special functions.

Besides numerous applications, most work on PVI falls into three cat-
egories: a) algebraic transformations of the equation [38, 31], b) search
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for special solutions, like algebraic ones [35] or those expressed in terms of
classical special functions [29], and c) asymptotic expansions at the fixed
singularities 0, 1,∞, [32, 28].

We propose a new approach which is expected to give exact (non-asymp-
totic) information on a broad class of solutions. Specifically, we propose to
study solutions of PVI with real parameters κj , which are real on one of the
intervals between the fixed singularities 0, 1,∞. Without loss of generality,
one may consider the interval (1,∞). Real solutions correspond to isomon-
odromic deformations of (2) where all parameters (singularities, exponent
differences and accessory parameters) are real. The ratio f = w1/w2 of
two linearly independent solutions of (2) satisfies the Schwarz differential
equation

f ′′′

f ′
−

3

2

(

f ′′

f ′

)2

= R(z), (3)

where R is a real rational function with real poles. Equation (3) has 5 real
singularities, and therefore f maps the upper half-plane H onto a circular
pentagon spread over the Riemann sphere, which is defined up to a Möbius
transformation. Notice that this pentagon is in general not a subset of the
Riemann sphere, as its interior angles may be arbitrarily large, and some
sides may be arbitrarily long. For the precise definition of a circular polygon
see section 3. Such circular polygons have been studied in connection with
linear differential equations by Klein [33] and his students [30], and recently
in [37] and in our work [21, 22, 23, 17, 18].

The correspondence between real equations (3) with five real singularities
and classes of circular pentagons modulo Möbius transformations is bijective.
Thus every solution of PVI defines a one-parametric (parametrized by x)
family of circular pentagons.

It turns out that the four interior angles of this pentagon are πκj , where
κj are parameters of PVI, and the fifth angle is 2π. Moreover, our pentagon
is of a special kind: it is a circular quadrilateral with a slit, and the tip of
the slit is f(q). (In some cases the quadrilateral degenerates into a trian-
gle of digon.) Such special pentagons, modulo Möbius transformations are
in bijective correspondence with real equations (3) with real singularities
corresponding to PVI.

For a real solution q(x) of PVI we call a point x ∈ (1,+∞) special, if
q(x) ∈ {0, 1, x,∞}. Special points are exactly those where the right hand
side of (1) is not defined; by the result of Painlevé stated above, these points
are poles or removable singularities of solutions.

We propose to solve the following problem:
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For given real parameters κj and given real solution q(x), x ∈ (1,+∞)
to find how many special points it has and their mutual position.

So the outcome will be a sequence which shows in which order q(x) takes
the values 0, 1,∞ and x, as x runs over (1,+∞). We suppose that a simple
combinatorial algorithm can be developed to solve this problem.

When x is a special point, our special pentagon degenerates to a circular
quadrilateral without a slit (sometimes to a triangle or digon). We found
transformation rules which relate the quadrilaterals corresponding to any
two adjacent special points xj , xj+1. By applying these rules to any circular
quadrilateral, we obtain a sequence of circular quadrilaterals which encodes
the sequence of special points. This sequence can be either finite or infinite
in one or both directions. This will give an algorithm of determining the
sequence of special points. The problems that remain are:

a) How to construct a circular quadrilateral effectively from a given so-
lution of PVI, and

b) What general properties of the sequence of special points can be
derived from this algorithm.

Particular solutions of PVI are parametrized by conjugacy classes of the
(projective) monodromy representations

(M0,M1,M2,M3) := (M0,M1,Mx,M∞), Mj ∈ PSL(2,C)

of the associated equation (3). Real solutions correspond to a special class
of monodromy representations with the property

Mj = σjσj+1, j ∈ Z4, (4)

for some reflections σj in the four circles to which the sides of our pentagons
project. So the steps one has to perform to solve a) are:

To describe which monodromy representations satisfy (4), and how to
find the reflections σj from the Mj effectively, and

To recover a circular pentagon from the parameters κj and the σj .

The first question seems to have a simple answer, while the second is
difficult, especially when some inner angles πκj are greater than 2π. We
plan to begin with the case of unitary monodromy which is much better
understood than the general case (see the next two sections).

Some new interesting general results can be obtained from the algorithm
outlined above, for example
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1. Classification of real solutions which have no real special points on
(1,+∞).

2. A criterion which tells whether the sequence of special points is finite,
infinite in one direction, or infinite in both directions.

Solutions of PVI with complex parameters without special points in
C\{0, 1} have been recently completely classified in our work [19].

An alternative aproach to problem 2 would use the Jimbo’s asymptotics
[32, 28] for solutions near 1 and +∞ in terms of the monodromy represen-
tation. It will be interesting to compare the two approaches.

The problems described in this section are closely related to the problem
of classification of circular quadrilaterals [30, 21, 22, 23, 17, 18] to which we
return in the next two sections.

2. Metrics of curvature 1 with conical singularities

These Riemannian metrics are defined by the length element ds = ρ(z)|dz|,
where z is a local conformal coordinate on a Riemann surface S. Here

∆ log ρ+ ρ2 = 2π
n
∑

j=1

αjδaj . (5)

The question is how many such metrics exist for given aj and αj > 0.
The analogous problem for non-positive constant curvature was solved by
Picard in the end of 19th century: the only obstacle to solvability of (5)
is the Gauss–Bonnet theorem, and if its conditions are satisfied, the metric
exists and is unique (up to a constant multiple in the case of zero curvature)
[40, 45]. The case of positive curvature is much more involved, and at present
one has to restrict to special cases.

Equation (5) is a simplest representative of a class of non-linear PDEs
which are called the mean field equations, and which are subject of current
intensive research (see [43, 34, 7, 37]). Under the restriction 0 < αj < 1,
very complete results are available [45, 36].

We mostly restrict ourselves to the case when S is the sphere. In an
important symmetric case, there is a circle C ⊂ S which contains all singu-
larities aj , and the metric is symmetric with respect to C.

The problem has been completely solved in the case of three singularities
[10], so the simplest unsolved case is four singularities. As every surface of
constant curvature 1 is locally isometric to a piece of the standard sphere,
we obtain the multi-valued developing map

f : S\{a1, . . . , an} → C,
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whose monodromy is a subgroup of SU(2). Here C is the sphere equipped
with the standard spherical metric. This map f solves the Schwarz differ-
ential equation of the form (3), where R is a rational function with poles
of second order at aj , and the principal parts at these poles depending on
αj . The remaining parameters of R are essentially the accessory parameters
which have to be determined so that the monodromy of f is unitarizable,
that is conjugate to unitary monodromy. The Schwarz equation is equiva-
lent to a linear ODE of the form (2), and our problem is equivalent to the
following analytic problem:

For equation (2) with prescribed singularities and exponent differences,
in how many ways one can determine the accessory parameters, so that the
projective monodromy group is conjugate to a subgroup of SU(2)?

In the case of four singularities the linear equation (2) is the Heun equa-
tion, which has one accessory parameter λ. As one can take (0, 1, a,∞) as
its singular points, our problem can be stated as counting solutions of one
equation F (a, λ) = 0 for a given a. When this equation is algebraic, count-
ing all solutions is usually not difficult, but to solve the symmetric problem
we have to count its real solutions. However in most cases this equation is
transcendental.

In our previous work [15, 20, 21, 22, 17, 18] we developed two approaches
to this problem:

A geometric approach which works in the symmetric case.
An algebraic approach, based on consideration of Jacobi matrices and

associated quadratic forms; it works only when the equation F (a, λ) = 0 is
algebraic.

These two approaches enabled us to solve the problem in the following
cases:

a) When all but 2 of the αj are integers [21, 22],
b) When three of the αj are non-integer, and the rest are integers, sym-

metric case [23],
c) When n = 4 and all αj = mj + 1/2, where mj ≥ 0 are integers,

symmetric case [17, 18].
We plan to continue this program. First of all, we will generalize b) to

the general (non-symmetric) case. The conjectured result is the following:

If α0, α1, α2 are not integers, but α3, . . . , αn are integers, then the nec-
essary and sufficient condition of the existence of the metric is

cos2 πα0 + cos2 πα1 + cos2 πα2 + 2(−1)σ cosπα0 cosπα1 cosπα2 < 1, (6)
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where

σ =
n
∑

j=3

(αj − 1),

and if it is satisfied, there exist α3 . . . αn non-equivalent metrics, for generic
position of the singularities.

The metrics are called equivalent if the corresponding developing maps
are related by f1 = L ◦ f2, where L is a Möbius transformation. This con-
jectured result is based on a transformation of the hypergeometric equation
into an equation (2) with three non-integer exponent differences, which we
discovered. The existence of such a transformation was hinted by Klein in
his lectures [33, p. 20], in the last paragraph of the 4-th lecture, but Klein
does not give a clear statement.

Next we plan to consider the general symmetric case with four singulari-
ties, in other words, we wish to determine how many choices of the accessory
parameter in the real Heun equation give unitarizable monodromy.

This we plan to do with the geometric method which is based on a
complete classification of (geodesic) spherical quadrilaterals.

Classification of spherical quadrilaterals is a part of the problem of clas-
sification of all circular quadrilaterals mentioned in section 1. This classi-
fication will also permit us to complete the description of real solutions of
the Painlevé VI equation in the case of unitary monodromy.

It seems that the algebraic method is limited to the case when there are
at most three non-integer angles, so only geometric method remains when
there are more. Preliminary results we obtained so far suggest that it will
be possible to give a complete classification of spherical quadrilaterals up to
isometry.

3. Classification of circular quadrilaterals.

The problems stated in the two previous sections are closely related to
classification of circular quadrilaterals. We begin with a formal definition.
A circular polygon is defined by the following data:

(D, t1, . . . , tn, f),

where D is a disk in C, tj are distinct points on ∂D, enumerated in the
natural order, and f : D → C is a continuous function meromorphic in
D\{tj} with the following properties:

f is a local homeomorphism on D\{tj},
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f has a conical singularity at each tj , that is

f(z) = f(tj) + (c+ o(1))(z − tj)
αj , z → tj , αj > 0, c 6= 0, (7)

and f([tj , tj+1]) is a subset of some circle Cj ⊂ C. Here [tj , tj+1] is the
boundary arc between tj and tj+1. If αj = 0, the power in (7) must be
replaced by the logarithm. The numbers παj ≥ 0, are the interior angles of
the polygon.

To each circular polygon we associate the lower configuration

(C1, a1, C2, a2, . . . , Cn, an),

where Cj are the circles containing f(tj , tj+1) and aj = f(tj).
The main question is:

How many circular polygons there exist for given angles παj and given
lower configuration consistent with these angles.

If all αj are integers, f extends by reflection to a rational function, and
the problem was completely solved in [15, 20]. This was done by introduc-
ing a simple combinatorial invariant which is called the net: it is the cell
decomposition of D obtained by taking the f -preimage of the lower config-
uration. In our subsequent work [21, 22, 17, 18] we extended the method to
non-integer angles.

The cells of the net are labeled by their f -images. Two polygons are
equal if their lower configurations are equal and if their labeled nets are
obtained from each other by an orientation-reserving homeomorphism of D.
Thus the main question stated above is reduced to a purely combinatorial
problem of classification of certain cell decompositions of a disk.

Problems in section 1 require a classification of all circular quadrilater-
als. This includes classification of lower configurations, and as a first step,
classification of quadruples of circles on the sphere such that Cj ∩Cj+1 6= ∅.
It turns out that there are 15 generic types of such quadruples (up to homeo-
morphisms of the sphere), and the type of the quadruple is a new important
topological invariant of a real solution of PVI: it is responsible for the num-
ber and order of special points on an interval (see section 1). For example,
we conjecture that the number of special points is finite if and only if each
two circles of the lower configuration intersect.

Classification of circular quadrilaterals is a difficult problem, and the
connection of this problem with Painlevé VI equation which we described
in section 1 can be used in two ways: certainly such a classification will
shed light on the real solutions of PVI, but it is also possible that modern
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analytic results on PVI, especially the Jimbo’s asymptotics will help with
completing the classification.

Problems in section 2 require a classification of spherical quadrilaterals
(that is, geodesic ones). This means that all Cj are great circles, and there
is only one generic configuration of four great circles. This permitted us
to obtain a preliminary draft of the classification of spherical quadrilaterals
which was mentioned in section 2.

A complete classification of circular triangles was obtained by Klein,
with the important applications to the hypergeometric equation. The most
comprehensive previous work on classification of circular quadrilaterals is the
thesis of Klein’s student Ihlenburg [30], who developed the ideas of Klein
and Shönflies, and obtained universal relations between the angles and side
lengths. But his work falls far short of the complete classification.

4. Entire functions arising as spectral determinants of PT-

symmetric boundary value problems.

In this section we consider the eigenvalue problem

−y′′ + ((−1)ℓ+1zm + λ)y = 0, (8)

with the boundary conditions y(z) → 0 on two appropriate rays in the
complex plane. The values λ for which such a solution exists are called
eigenvalues. When m = 2, ℓ = 1, this is equivalent to a harmonic oscillator,
which is the only exactly solvable case. When m = 4, ℓ = 2 we have
quartic anharmonic oscillators. We notice that anharmonic oscillators with
quartic and cubic potentials play a prominent role in the development of
quantum mechanics and quantum field theories since the very beginning of
these theories. The idea to consider the case of non-integer real α and to
study what happens to the eigenvalues when α varies is due to C. Bender,
see [1] and references there. Our notation differs from that of Bender by the
change of the independent variable z 7→ iz.

It was conjectured by Bessis and Zinn-Justin, and proved by Dorey,
Dunning and Tateo [8], that when m = 3 and the normalization rays are
symmetric with respect to the real line, all eigenvalues are real. To explain
this surprising result, Bender proposed to study PT-symmetric boundary
value problems. Here PT stands for “parity–time” but for our purposes one
can accept the following definition: a problem is called PT-symmetric if the
differential operator has real coefficients, while the two normalization rays
are symmetric with respect to the real line. When the normalization rays
are the positive and negative rays, we obtain Hermitian symmetry, and in
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this case all eigenvalues are real. For a general PT-symmetric problem, the
eigenvalues are symmetric with respect to the real line. If they are real, they
say that PT symmetry is unbroken, otherwise it is broken.

To obtain a non-trivial PT-symmetric problem for equation (8) one
chooses the two normalization rays

arg z = ±
ℓ+ 1

m+ 2
π.

Bender and Boettcher [1] computed and plotted several smallest real eigen-
values as functions of α for ℓ = 1, 2 and real m, and observed a remarkable
breaking of PT-symmetry.

We propose here to prove these features found in [1] rigorously. So far
we have the following preliminary result [13]:

If m ≥ 4 and ℓ = 2, then all eigenvalues are real and positive.

This is obtained by a generalization of the method of K. Shin [41], who
proved among other things that the spectrum is real and positive when
m ≥ 2 and ℓ = 1. Our theorem, together with this result of Shin, covers
all cases when the spectrum is real according to the computation of Bender
and Boettcher.

The main conjecture is the following:
If m ∈ (2, 3) ∪ (3, 4) and ℓ = 2, then there are only finitely many real

eigenvalues, while the arguments of the rest of the eigenvalues accumulate
as λ → ∞ to the points

±
4−m

2 +m
π.

The pictures in [1] suggest that for this range of m, ℓ all but finitely many
eigenvalues are non-real. Our conjecture about accumulation rays is based
on a heuristic argument. We hope to be able to convert this argument to a
rigorous one.

Our interest in this problem started with the question of the theory of
entire functions asked in [27]: Does there exist an entire function f with all
zeros positive and all 1-points (solutions of the equation f(z) = 1) lying on
two rays different from the positive ray?

In [6] we proved that if such function exists then the two rays where
the 1-points lie must be of the form arg z = ±α. But it is surprising that
such entire functions exist at all, and we showed that they indeed exist
when α ∈ (0, π/3) and α = 2π/5. Our examples come from the theory of
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the differential equation (8). When m = 3, the Stokes multiplier of this
equation satisfies the functional equation

f(λ) + f(ωλ)f(ω−1λ) = 1, ω = 2π/5,

and as f has all zeros positive, we obtain the example with α = 2π/5. This
functional equation was studied for the first time by Sibuya and Cameron
[42]. Recently it was discovered [8, 9] that similar functional equations
occur not only in the study of the Stokes phenomenon of (8) but also in
the integrable models of statistical mechanics. This analogy with statistical
mechanics permitted to prove the reality of the eigenvalues of PT-symmetric
problems.

We find this connection of the theory of entire functions with differential
equations and integrable models remarkable and deserving further study,
and consider the specific problem stated above as a first step.

5. Broader impact of the proposed research.

We expect two kinds of the broader impact:
1. Analytic theory of differential equations is one of the main mathe-

matical tools of physics. Section 4 of this proposal is directly stimulated
by questions of physicists [1] and we assume that the proposed research
will be useful in PT-symmetric quantum mechanics. The choice of prob-
lems in sections 1-3 is motivated by their intrinsic mathematical interest
rather than specific applications. However the previous mathematical work
of the proposers found various applications, sometimes unexpected, in con-
trol theory, material science, computer science, signal processing, physics
and astrophysics, and we expect that the proposed research will have simi-
lar applications.

2. The proposers expect a contribution of this research on education.
They plan to attract graduate, and possibly undergraduate students to par-
ticipate in this research. The proposer will also continue his efforts in creat-
ing public resources which are intended to increase public scientific literacy
and public engagement with science and technology. This includes his web
pages and active participation in the projects like Math Overflow.

In other words, we expect similar broader impact to our previous NSF
funded research.
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