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A function y(z) of a complex variable z is called an n-valued algebroid
function if it satisfies an algebraic equation

an(z)yn + . . . + a1(z)y + a0(z) = 0,

where aj are entire functions, an 6= 0. If y is not algebraic it is called
transcendental.

In 1941 Johannes Malmquist published the following theorem [6]:

Theorem 1. Let k be the field of all algebraic functions (the algebraic closure
of C(z)), and F ∈ k[t1, t2] an irreducible polynomial. If the differential
equation

F

(
dy

dz
, y

)
= 0 (1)

has a transcendental n-valued algebroid solution y, then:
either there exists a polynomial G ∈ k[t1, t2], with degt1 G = n, and an

algebroid function w solving

dw

dz
= aw2 + bw + c, where a, b, c ∈ k, (2)

such that G(y, w) = 0,
or there exists a polynomial G1 ∈ k[t1, t2, t3] with degt1 G1 = n, degt2G1 =

1, and an algebroid function w solving(
dw

dz

)2

= aP (w), where a ∈ k, P ∈ C[t], degP = 3. (3)
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such that G(y, y′, w) = 0.

For example, the equation

2y′ + y + y3 = 0

has a 2-valued algebroid solution y = 1/
√
ez − 1; by the change of the variable

w = 1/y2 the equation is reduced to

w′ = w + 1,

which of of type (2).
This result contains two special cases published by Malmquist earlier:
In 1913 he proved the special case for the equation (1) of first degree in

y′, that is of the form [4]:

y′ = R(y), R ∈ k(t).

In this case only the first possibility (2) can hold, and w = y.
In 1920 he proved the special case n = 1 for general equation (1), [5].
I know only two references on [6] in the literature: in [8], the authors

after mentioning [5] write “see also [6]” with no other comments, and in [9]
the authors mention [6] only to write that “The classical proofs of Malmquist
are, however, incomprehensible for the modern reader.”

On the other hand, [5] is well-understood: the first proof independent of
Malmquist’s paper was given in [2], and two other proofs in [8] and [1].

In the paper [3] a generalization of [4] is given (still with n = 1). Most
of the literature where the name “Malmquist Theorem” occurs is concerned
with the intersection of [4] and [5], that is the case when n = 1 and the
equation is of the form (2). A survey of this literature is contained in [2].

The case k = C of Theorem 1 is also interesting. Then the differential
equation is

F (y′, y) = 0, F ∈ C[t1, t2], (4)

and the inverse function of y is an Abelian integral. So the Theorem 1 says
for this case that

If an Abelian integral has an algebroid inverse, then this inverse is either an
algebraic function, or an algebraic function of the exponential or an algebraic
function of an elliptic function.
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Since equation (4) is autonomous, its general solution is of the form y(z+
c), where y is a particular solution. So if we have a transcendental algebroid
solution, the general solution is also algebroid, and a theorem of Painlevé [7,
Introduction, 8] applies.

An alternative proof can be obtained by considering periods of the func-
tion y satisfying (4). Unfortunately none of these two proofs of the special
case apply to the general case.
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[5] J. Malmquist, Sur les fonctions à un nombre fini de branches satisfaisant
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