MA440 REAL ANALYSIS (HONORS)

MIDTERM EXAM 1 PRACTICE PROBLEMS

1. Suppose $A \subset \mathbb{R}^p$ and $B \subset \mathbb{R}^q$ and consider the product

$$A \times B = \{(x, y) \in \mathbb{R}^{p+q} : x \in A, y \in B\}.$$

- (a) Show that if A and B are open in \mathbb{R}^p and \mathbb{R}^q , respectively, then $A \times B$ is open in \mathbb{R}^{p+q} .
- (b) Similarly, show that if both A and B are closed, then $A \times B$ is closed.
- **2.** Let $(x_n)_{n=1}^{\infty}$ be a sequence of points in \mathbb{R}^p with the property that there exists a real number r, 0 < r < 1, and an integer N_0 such that

$$||x_{n+1} - x_n|| \le r||x_n - x_{n-1}||$$
 for all $n \ge N_0$.

Then prove $(x_n)_{n=1}^{\infty}$ is a convergent sequence.

- **3.** Let $(x_n)_{n=1}^{\infty}$ be a sequence in a compact set $K \subset \mathbb{R}^p$ that is *not* convergent. Show that there are two subsequences of this sequence that are convergent to different limit points.
- **4.** We say that x is a *limit point* of the sequence (x_n) if $x = \lim_{k \to \infty} x_{n_k}$ for a certain subsequence (x_{n_k}) . Construct a compact set of real numbers whose limit points form a countable set.
- **5.** Prove that if A and B are disjoint closed sets in \mathbb{R}^n , then $A \cup B$ is disconnected.
- **6.** Let (a_n) be a sequence of real numbers of such that $a = \lim_{n \to \infty} a_n$. Show that the sequence of arithmetic means

$$\alpha_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

is also convergent and $\lim_{n\to\infty} \alpha_n = a$.

7. Find the upper and lower limits of the sequence (x_n) defined by

$$x_1 = 0$$
, $x_{2m} = \frac{x_{2m-1}}{2}$, $x_{2m+1} = \frac{1}{2} + x_{2m}$.

8. Suppose that (x_n) and (y_n) are Cauchy sequences in \mathbb{R}^p . Show that the numeric sequence $d_n = ||x_n - y_n||$ is convergent.

1