
MATH 303, Fall 2018 Midterm exam

NAME: A. Eremenko

1. For the differential equation

(x5 − 2x4 + x3)y′′ + 2x2y′ + (x− 1)y = 0,

find all singular points and determine which of them are regular.

Solution. Singular points are 0 and 1, both irregular.

1



2. a) The differential equation

(x3 + 1)y′′ + xy′ + y = 0

has a solution

y(z) = 1 +
∞
∑

n=1

an(x− 2)n. (1)

Give a lower estimate of the radius of convergence of this series, based on
the location of singularities,

b) The differential equation

(x− 1)2y′′ + x(x− 1)y′ + y = 0

has a solution of the same form (1). Determine precisely the radius of con-
vergence of the series. (Give a full justification of your answer.)

Solution a). To find singular points one has to solve x3+1 = 0. One root
x1 = −1 is evident. To find two other roots, we factor

x3 + 1 = (x+ 1)(x2 − x+ 1).

Solving the quedratic equation we obtain the roots

x2,3 = 1/2± i
√
3/2.

The radius of convergence is at least the distance from the point 2 to the
closest singular point. The distance from 2 to 1/2 + i

√
3/2 equals

√

(2− 1/2)2 + 3/4 =
√

9/4 + 3/4 =
√
12/2 =

√
3.

The distance to the other two roots is greater than or equal to this. Therefore
the lower estimate for the radius of convergence is

√
3.

b) There is only one singular point, x1 = 1, and the distance from 2 to
1 is 1. This gives the lower estimate for the radius of convergence. To see
whether it is exact, write and solve the indicial equation at the point 1. The
equation is

r(r − 1) + r + 1 = 0,
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and its solutions are ±i. From the general theory we conclude that the
general solution of our equation has the form

c1 cos log |x− 1|+ c2 sin log |x− 1|.

This function cannot have limit as x → 1, unless c1 = c2 = 0. But c1 = c2 = 0
is incompatible with the initial condition y(0) = 1. Thus we know that opur
solution cannot have a limit as x → 1, therefore the radius of convergence is
exactly 1.
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3. The differential equation

y′′ + (2 + x)y′ − 2y = 0

has a solution of the form

y(x) = 1 +
∞
∑

n=2

anx
n.

Find a2, a3 and a4.

Solution. First method. We know from the given form of the solution
that y(0) = 1, y′(0) = 0. Plugging x = 0, y(0) = 1, y′(0) = 0 to the equation,
we obtain that y′′(0) = 2.

Differentiating the equation we obtain

y′′′ = −(2 + x)y′′ + y′.

Plugging to this x = 0, y(0) = 1, y′(0) = 0, y′′(0) = 2, we obtain y′′′(0) = −4.
Differentiating again we obtain

yIV = −(2 + x)y′′′.

Plugging x = 0, y′′′(0) = 4, we obtain yIV (0) = 8.
Now Taylor’s formula gives a2 = y′′(0)/2! = 1, a3 = y′′′(0)/3! = −2/3,

and a4 = yIV (0)/4! = 1/3.

Second method. Write

y(x) = 1 + a2x
2 + a3x

3 + a4x
4 + . . . ,

and differentiate twice:

y′(x) = 2a2x+ 3a3x
2 + 4a4x

3 + . . . ,

y′′(x) = 2a2 + 6a3x+ 12a4x
2 + . . . .

Plugging this to the equation and balancing the terms with powers 0, 1, 2 of
x, we obtain a2 = 1, a3 = −2/3, a3 = 1/3.
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4. Find the number c such that the solution of the initial value problem

x2y′′ − 2y = 0, y(1) = 1, y′(1) = c

remains bounded as x → 0.

Solution. This is an Euler equation. The indicial equation is r(r−1)−2 =
r2 − r− 2 = 0. Solving it we obtain r1 = 2, r1 = −1. So the general solution
of our differential equation is

y(x) = c1x
2 + c2x

−1.

Plugging the initial condition, we obtain a system

c1 + c2 = 1, 2c1 − c2 = c.

Solving this system we obtain c1 = (c+ 1)/3, c2 = (2− c)/3.
Solution y will be bounded as x → 0 if and only if c2 = 0. Because

x−1 → ∞ when x → 0 and the other summand is bounded. Therefore, the
necessary and sufficient condition for boundedness of our solution is c = 2.
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5. Solve using the Laplace transform:

y′′ + 3y′ + 2y = f(t), y(0) = y′(0) = 0,

where f is defined by

f(t) =

{

1, 0 ≤ t < 1,
0, 1 ≤ t < ∞,

Solution. Laplace transform of the right hand side is

∫ 1

0
e−stdt = (1− e−s)/s.

(The function in the RHS is 1− u1 so you could also use the table). Taking
the Laplace transform of the equation we obtain

Y (s) =
1− e−s

s(s2 + 3s+ 2)
=

1− e−s

s(s+ 1)(s+ 2)
.

Now use the partial fraction decomposition:

1

s(s2 + 3s+ 2)
=

1

2s
− 1

s+ 1
+

1

2(s+ 2)
.

Using the table backwards we find

y(t) =
1

2
− e−t +

1

2
e−2t − u1(t)

(

1

2
− e1−t − 1

2
e−2(t−1)

)

.
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6. Find the inverse Laplace transforms of the function

F (s) =
1

(2s− 1)2
+

e−2s

2s2 + 1
.

Solution. From the tables we find

f(t) =
tet/2

4
+

1√
2
sin

t− 2√
2
.
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