MATH 303, Fall 2018 Midterm exam

NAME: A. Eremenko

1. For the differential equation
(2° — 22" + 2%)y" + 22% + (x — 1)y = 0,
find all singular points and determine which of them are regular.

Solution. Singular points are 0 and 1, both irregular.



2. a) The differential equation
(@® +1)y" + 2y +y=0

has a solution .
y(z) =1+ Z a,(x —2)". (1)
n=1

Give a lower estimate of the radius of convergence of this series, based on
the location of singularities,

b) The differential equation
(2 =D%" +a(@-1)y +y=0

has a solution of the same form (1). Determine precisely the radius of con-
vergence of the series. (Give a full justification of your answer.)

Solution a). To find singular points one has to solve x* +1 = 0. One root
x1 = —1 is evident. To find two other roots, we factor

?+1=(x+1)(2* -z +1).
Solving the quedratic equation we obtain the roots
To3 = 1/2+iV3/2.

The radius of convergence is at least the distance from the point 2 to the
closest singular point. The distance from 2 to 1/2 + iv/3/2 equals

V(2 —1/2)2 +3/4=\/9/4+3/4=V12/2 = V3,

The distance to the other two roots is greater than or equal to this. Therefore
the lower estimate for the radius of convergence is v/3.

b) There is only one singular point, x; = 1, and the distance from 2 to
1is 1. This gives the lower estimate for the radius of convergence. To see
whether it is exact, write and solve the indicial equation at the point 1. The
equation is

r(r—1)+r+1=0,



and its solutions are 4i. From the general theory we conclude that the
general solution of our equation has the form

ci coslog |z — 1| + ¢ sinlog |z — 1.

This function cannot have limit as x — 1, unless ¢; = ¢, =0. But ¢y = ¢, =0
is incompatible with the initial condition y(0) = 1. Thus we know that opur
solution cannot have a limit as x — 1, therefore the radius of convergence is
exactly 1.



3. The differential equation
y'+@2+a)y —2y=0

has a solution of the form
y(z) =1+ a,a"
n=2
Find a9, a3 and ay.

Solution. First method. We know from the given form of the solution
that y(0) =1, ¢'(0) = 0. Plugging = = 0,y(0) = 1,%'(0) = 0 to the equation,
we obtain that y”(0) = 2.

Differentiating the equation we obtain

y/// — _(2 + x)y// +y/

Plugging to this = 0,y(0) = 1,%'(0) = 0,3”(0) = 2, we obtain y"'(0) = —4.
Differentiating again we obtain

yIV — _(2 +33)y’”.

Plugging x = 0,y"(0) = 4, we obtain 3!V (0) = 8.
Now Taylor’s formula gives as = 3”(0)/2! = 1, a3 = y"'(0)/3! = —2/3,
and a4 = y'V(0)/4! = 1/3.

Second method. Write
y(z) = 14 apz® + asz® + agr* + ...,
and differentiate twice:
Y () = 2as7 + 3azx® + dayx® + .. .,

y'(x) = 2ay + 6azz + 12a42% + . . ..

Plugging this to the equation and balancing the terms with powers 0, 1, 2 of
x, we obtain ay = 1, ag = —2/3, a3 = 1/3.



4. Find the number ¢ such that the solution of the initial value problem
o2 —2y=0, y(1)=1, ¢y(1)=c

remains bounded as x — 0.

Solution. This is an Euler equation. The indicial equation is r(r—1)—2 =
r2 —r —2 = 0. Solving it we obtain r; = 2, r; = —1. So the general solution
of our differential equation is

y(r) = c12® + ezt

Plugging the initial condition, we obtain a system
ci+c=1, 2c¢;—cy=c

Solving this system we obtain ¢; = (¢+1)/3, c2=(2—1¢)/3.

Solution y will be bounded as x — 0 if and only if ¢, = 0. Because
27! — oo when 2 — 0 and the other summand is bounded. Therefore, the
necessary and sufficient condition for boundedness of our solution is ¢ = 2.



5. Solve using the Laplace transform:
y'+3y +2y=f(t), y(0)=1y(0)=0,
where f is defined by

1, 0<t<l,
f(t)_{O, 1<t< oo,

Solution. Laplace transform of the right hand side is

/0 et = (1—e)/s.

(The function in the RHS is 1 — u so you could also use the table). Taking
the Laplace transform of the equation we obtain
1—e"® I1—e™?

Y= T3 +2) " s DG+

Now use the partial fraction decomposition:

1 1 1 1

(243542 25 s+l 2612

Using the table backwards we find

I S L, 1 —2(t—1))
y(t)—2—e —|—2€ —ul(t)(2—e —5e :



6. Find the inverse Laplace transforms of the function

1 6—25

F(s) = .
)= G T2t

Solution. From the tables we find

Cte? 1 -2

f(t) = TJrﬁsmW.



