MATH 303, Fall 2018 Midterm exam

NAME: A. Eremenko

1. For the differential equation

$$
\left(x^{5}-2 x^{4}+x^{3}\right) y^{\prime \prime}+2 x^{2} y^{\prime}+(x-1) y=0,
$$

find all singular points and determine which of them are regular.
Solution. Singular points are 0 and 1, both irregular.
2. a) The differential equation

$$
\left(x^{3}+1\right) y^{\prime \prime}+x y^{\prime}+y=0
$$

has a solution

$$
\begin{equation*}
y(z)=1+\sum_{n=1}^{\infty} a_{n}(x-2)^{n} \tag{1}
\end{equation*}
$$

Give a lower estimate of the radius of convergence of this series, based on the location of singularities,
b) The differential equation

$$
(x-1)^{2} y^{\prime \prime}+x(x-1) y^{\prime}+y=0
$$

has a solution of the same form (1). Determine precisely the radius of convergence of the series. (Give a full justification of your answer.)

Solution a). To find singular points one has to solve $x^{3}+1=0$. One root $x_{1}=-1$ is evident. To find two other roots, we factor

$$
x^{3}+1=(x+1)\left(x^{2}-x+1\right) .
$$

Solving the quedratic equation we obtain the roots

$$
x_{2,3}=1 / 2 \pm i \sqrt{3} / 2
$$

The radius of convergence is at least the distance from the point 2 to the closest singular point. The distance from 2 to $1 / 2+i \sqrt{3} / 2$ equals

$$
\sqrt{(2-1 / 2)^{2}+3 / 4}=\sqrt{9 / 4+3 / 4}=\sqrt{12} / 2=\sqrt{3}
$$

The distance to the other two roots is greater than or equal to this. Therefore the lower estimate for the radius of convergence is $\sqrt{3}$.
b) There is only one singular point, $x_{1}=1$, and the distance from 2 to 1 is 1 . This gives the lower estimate for the radius of convergence. To see whether it is exact, write and solve the indicial equation at the point 1 . The equation is

$$
r(r-1)+r+1=0
$$

and its solutions are $\pm i$. From the general theory we conclude that the general solution of our equation has the form

$$
c_{1} \cos \log |x-1|+c_{2} \sin \log |x-1| .
$$

This function cannot have limit as $x \rightarrow 1$, unless $c_{1}=c_{2}=0$. But $c_{1}=c_{2}=0$ is incompatible with the initial condition $y(0)=1$. Thus we know that opur solution cannot have a limit as $x \rightarrow 1$, therefore the radius of convergence is exactly 1 .
3. The differential equation

$$
y^{\prime \prime}+(2+x) y^{\prime}-2 y=0
$$

has a solution of the form

$$
y(x)=1+\sum_{n=2}^{\infty} a_{n} x^{n} .
$$

Find a_{2}, a_{3} and a_{4}.
Solution. First method. We know from the given form of the solution that $y(0)=1, y^{\prime}(0)=0$. Plugging $x=0, y(0)=1, y^{\prime}(0)=0$ to the equation, we obtain that $y^{\prime \prime}(0)=2$.

Differentiating the equation we obtain

$$
y^{\prime \prime \prime}=-(2+x) y^{\prime \prime}+y^{\prime} .
$$

Plugging to this $x=0, y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=2$, we obtain $y^{\prime \prime \prime}(0)=-4$.
Differentiating again we obtain

$$
y^{I V}=-(2+x) y^{\prime \prime \prime}
$$

Plugging $x=0, y^{\prime \prime \prime}(0)=4$, we obtain $y^{I V}(0)=8$.
Now Taylor's formula gives $a_{2}=y^{\prime \prime}(0) / 2!=1, a_{3}=y^{\prime \prime \prime}(0) / 3!=-2 / 3$, and $a_{4}=y^{I V}(0) / 4!=1 / 3$.

Second method. Write

$$
y(x)=1+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots,
$$

and differentiate twice:

$$
\begin{aligned}
& y^{\prime}(x)=2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\ldots, \\
& y^{\prime \prime}(x)=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\ldots
\end{aligned}
$$

Plugging this to the equation and balancing the terms with powers $0,1,2$ of x, we obtain $a_{2}=1, a_{3}=-2 / 3, a_{3}=1 / 3$.
4. Find the number c such that the solution of the initial value problem

$$
x^{2} y^{\prime \prime}-2 y=0, \quad y(1)=1, \quad y^{\prime}(1)=c
$$

remains bounded as $x \rightarrow 0$.
Solution. This is an Euler equation. The indicial equation is $r(r-1)-2=$ $r^{2}-r-2=0$. Solving it we obtain $r_{1}=2, r_{1}=-1$. So the general solution of our differential equation is

$$
y(x)=c_{1} x^{2}+c_{2} x^{-1}
$$

Plugging the initial condition, we obtain a system

$$
c_{1}+c_{2}=1, \quad 2 c_{1}-c_{2}=c .
$$

Solving this system we obtain $c_{1}=(c+1) / 3, \quad c_{2}=(2-c) / 3$.
Solution y will be bounded as $x \rightarrow 0$ if and only if $c_{2}=0$. Because $x^{-1} \rightarrow \infty$ when $x \rightarrow 0$ and the other summand is bounded. Therefore, the necessary and sufficient condition for boundedness of our solution is $c=2$.
5. Solve using the Laplace transform:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

where f is defined by

$$
f(t)= \begin{cases}1, & 0 \leq t<1 \\ 0, & 1 \leq t<\infty\end{cases}
$$

Solution. Laplace transform of the right hand side is

$$
\int_{0}^{1} e^{-s t} d t=\left(1-e^{-s}\right) / s
$$

(The function in the RHS is $1-u_{1}$ so you could also use the table). Taking the Laplace transform of the equation we obtain

$$
Y(s)=\frac{1-e^{-s}}{s\left(s^{2}+3 s+2\right)}=\frac{1-e^{-s}}{s(s+1)(s+2)}
$$

Now use the partial fraction decomposition:

$$
\frac{1}{s\left(s^{2}+3 s+2\right)}=\frac{1}{2 s}-\frac{1}{s+1}+\frac{1}{2(s+2)}
$$

Using the table backwards we find

$$
y(t)=\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}-u_{1}(t)\left(\frac{1}{2}-e^{1-t}-\frac{1}{2} e^{-2(t-1)}\right) .
$$

6. Find the inverse Laplace transforms of the function

$$
F(s)=\frac{1}{(2 s-1)^{2}}+\frac{e^{-2 s}}{2 s^{2}+1} .
$$

Solution. From the tables we find

$$
f(t)=\frac{t e^{t / 2}}{4}+\frac{1}{\sqrt{2}} \sin \frac{t-2}{\sqrt{2}}
$$

