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NORMAL HOLOMORPHIC MAPS FROM C
∗

TO A

PROJECTIVE SPACE

ALEXANDRE EREMENKO

Abstract. A theorem of A. Ostrowski describing meromorphic functions f

such that the family {f(λz) : λ ∈ C∗} is normal, is generalized to holomor-

phic maps from C∗ to a projective space.

Let f : C∗ → P
n be a holomorphic curve and

(1) F = (g0, g1, . . . , gn)

some homogeneous representation of f . This means that gj are analytic functions

in C
∗ without common zeros. When n = 1, we have P

1 = C, and f can be

identified with a meromorphic function g1/g0 in C
∗.

There is a conformal Riemannian metric with the line element

(2) |dz|/|z|

on C
∗ which is invariant with respect to conformal automorphisms z 7→ λz, λ 6= 0.

The punctured plane with this metric is isometric to a cylinder of infinite length

and circumference 2π.

A holomorphic curve in C
∗ is called normal if it is uniformly continuous with

respect to this metric (2) and the Fubini-Study metric in P
n. An equivalent

property is that {z 7→ f(λz) : λ ∈ C
∗} is a normal family: every sequence

of these maps has a subsequence which converges uniformly on compacts with

respect to the Fubini–Study metric to a holomorphic map C
∗ → P

n.

A normal holomorphic curve in C
∗ has genus zero, which means that it has a

canonical homogeneous representation

(3) gj(z) = Ajz
mj

∏

|zj,k|<1

(1 − zj,k/z)
∏

|zj,k|≥1

(1 − z/zj,k),
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where zj,k are the zeros of gj , Aj is a constant, and mj is an integer. We can and

will always assume that minj mj = 0, which defines these integers uniquely. It

is clear that zj,k are uniquely defined by f , and Aj are defined up to a common

multiple.

In fact,

Aj = exp

(

1

2π

∫ π

−π

log |gj(e
iθ)|dθ

)

.

A. Ostrowski [4] considered normal meromorphic functions (n = 1), and com-

pletely characterized them in terms of parameters of the canonical representation,

see also [3, Ch. VI], for an exposition of this work.

In this paper, the result of Ostrowski is extended to arbitrary dimension n.

We begin with a reformulation of convergence of curves in terms of homoge-

neous coordinates. Consider a sequence Fk = (gk,0, . . . , gk,n) of (n + 1)-tuples

of holomorphic functions in an arbitrary region D. We assume that coordinates

of each Fk have no zeros common to all of them. Then we have a sequence of

holomorphic curves fk : D → P
n.

Lemma 1. The sequence (fk) converges with respect to the Fubini–Study met-

ric, uniformly on compacts in D, if and only if the following two conditions are

satisfied:

(i) For every compact K ⊂ D, there exist functions hk holomorphic on K, having

no zeros, and such that for every j there exists a limit uniform on K, with respect

to the Euclidean metric in C:

(4) lim
k→∞

hkgk,j = g∞,j ,

and

(ii) If (4) is satisfied with some hk as in (i) then functions g∞,0, . . . , g∞,n have

no common zeros.

Some, but not all, functions g∞,j may be identically equal to 0. Condition (ii)

means that the rest of them have no common zeros.

Proof. It is evident that (i) and (ii) imply convergence of (fk).

In the other direction, let fk → f converge. Let F = (g0, . . . , gn) be a homo-

geneous representation of f . Let I ⊂ {0, . . . , n} be the set of indices for which

gj 6≡ 0. There exist δ > 0 and a finite open covering {Dj : j ∈ I} of K such that

|gj(z)| ≥ δ, z ∈ Dj , j ∈ I. This implies that Fubini–Study distance from f(Dj)

to the hyperplane wj = 0 is positive, so gk,j are free from zeros on Dj when k is

large enough.



NORMAL HOLOMORPHIC MAPS 3

On Dj we define hk,j = gj/gk,j . These functions are holomorphic and zero-free

on Dj when k is large enough. We have gk,i/gk,j → gi/gj uniformly on Di ∩Dj .

Let pk,i,j = hk,i/hk,j on Di ∩Dj . Then

(5) pk,i,j → 1

uniformly on Di ∩Dj and we have the cocycle condition

(6) pk,i,jpk,j,lpk,l,i = 1

on triple intersections. In view of (5) we can define the principal branches of

log pk,i,j on the double intersections. Then there exist holomorphic functions φk,j

on Dj such that log pk,i,j = φk,i − φk,j on Di ∩Dj , and φk,j → 0 as k → ∞, on

Dj (we may need to shrink the Dj a little at this step). See [2], theorems 1.2.2,

1.4.3′, 1.4.4 and 4.4.2. Now we set hk = hk,j exp(−φk,j) and these hk do the job.

This proves (i).

The functions hk we constructed have property (ii). Now we show that (ii)

must hold for every sequence of functions hk as in (i). Let I ′ = {j : g∞,j ≡ 0},

and I = {0, . . . , n}\I ′. Suppose that z0 is a common zero of g∞,j , j ∈ I. Then

for every ǫ > 0 there is a closed disc G centered at z0 such that for j ∈ I and k

large enough, each function hkgj,k has a zero in G. Let

Mk = max{|hkgk,j(z)| : z ∈ G, j ∈ I}.

Then Mk is bounded from below as k → ∞ by a constant that depends only on

G. So we have

max{|hkgk,j(z)| : z ∈ G, j ∈ I ′} = o(Mk).

This means that for some points zk ∈ G, fk(zk) tends to the subspace

HI′ = {(w0, . . . , wn) : wj = 0, j ∈ I ′}.

On the other hand, fk(z), z ∈ G visits every hyperplane Hj defined by wj = 0

for j ∈ I. As these hyperplanes and subspace HI′ have empty intersection,

diameter of fk(G) must be greater then a positive constant independent of k. This

contradicts our assumption that G is a disc of radius ǫ which can be arbitrarily

small, because the sequence (fk) is equicontinuous. This completes the proof of

Lemma 1.

For the future use, we need a restatement of condition (ii) which does not

involve the limit functions g∞,j .

Suppose that (i) holds. Then (ii) is equivalent to the following condition:
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There exist C and δ (depending on K and (fk)) such that such that for every

disc D(z0, δ) with z0 ∈ K, and for every I ⊂ {0, . . . , n}, whenever all gk,j , j ∈ I

have zeros in D(z0, δ), we have

(7) max
0≤j≤n

|hkgk,j(z0)| ≤ max
j∈I′

|hkgk,j(z0)| + C,

where I ′ = {0, . . . , n}\I.

The equivalence of (ii) and (7), assuming that (i) holds, has been established

in the proof of the second part of Lemma 1.

For a function g holomorphic in a ring {z : r1 < |z| < r2}, we define

N(r, g) =
1

2π

∫ π

−π

log |g(reiθ)|dθ,

and

N(t, g) = N(et, g).

It is well-known that this function N is convex on (r1, r2), and piecewise-linear. It

is linear (affine) on an interval (a, b) if g has no zeros in the ring {z : ea < |z| < eb},

and the derivative N
′ has a jump k at the point t if g has k zeros on the circle

|z| = et. All this follows from the Jensen formula.

Lemma 2. Using the notation of Lemma 1, suppose that Fk are defined in a ring

{r1 < |z| < r2} and that (fk) converges to a limit, so that (i) and (ii) hold. Then

there exist linear functions ℓk(t) = akt+bk, such that for every j ∈ [0, n] the limit

lim
k→∞

N(t, gk,j − ℓk) < +∞

exists, possibly identically equal to −∞, uniformly on every interval [a, b] such

that log r1 < a < b < log r2.

Proof. Indeed, the functions hk of Lemma 1 are zero-free in the ring, so N(t, hk)

are linear functions.

Let us fix some interval (−a, a) and consider (n+ 1)-tuples

Φ = (φ0, φ1, . . . , φn)

of convex functions on (−a, a). We say that a sequence Φk of such tuples con-

verges uniformly if for each j the coordinates φk,j converge uniformly on compact

subintervals to finite convex functions, or to identical −∞. A family of such

(n + 1)-tuples of convex functions is called normal if every sequence contains a

subsequence that converges uniformly. If n = 0 and we are dealing with a family
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of convex functions, then the criterion of normality is that the family is uniformly

bounded from above on each compact subinterval. The limit function is finite if

in addition the functions of the sequence are bounded from below at some point.

These statements are well-known and easy to prove.

An equivalent criterion of normality with all limit functions finite for n = 0

is that all functions are bounded at some point, their derivatives are bounded at

the same point, and the total jump of the derivatives is bounded on each compact

subinterval.

From this, it is easy to derive a criterion for every n > 0: for normality of a

family of (n+1)-tuples of convex functions, it is necessary and sufficient that the

functions φ = maxj φj form a normal family with n = 0.

Lemma 3. Let X = {Φ} be a set of (n+1)-tuples of convex functions on (−a, a).

Suppose that there exist linear functions ℓΦ such that the family

{Φ − ℓΦ} = {(φ0 − ℓΦ, . . . , φn − ℓΦ)}

is normal on (−a, a). Then one can take

ℓΦ(t) = φ(0) + φ′(0)t, where φ = max
j

{φ0, . . . , φn},

and φ′ is the derivative from the right.

This is an immediate consequence from what was said before the lemma.

Now we return to our original setting: f is a normal holomorphic map from

C
∗ to P

n, and F is a canonical representation of f as in (1), (3).

We are going to state two conditions for the curve f to be normal. We define

N(t, F ) =
n

max
j=0

N(t, gj).

The derivative N
′(t, F ) is always understood as the derivative from the right, so

it takes only integer values, because N
′(t, gj) takes only integer values.

Our first necessary condition of normality is a consequence of Lemma 3:

For every a > 0 there exists C(a) > 0 such that

(8) N(t, F ) − N(s, F ) − N
′(s, F )(t− s) ≤ C(a), |t− s| < a.

Condition (8) is equivalent to

(9) N(t, F ) − N(s, F ) − N
′(s, F )(t− s) ≤ C1(1 + (t− s)2),

for some C1 > 0 and all s, t.

Our second condition is related to statement (ii) of Lemma 1 and (7):
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There exists δ > 0 and C > 0 such that for every disc (with respect to the

metric (2)) of radius δ, centered at a point w ∈ C
∗, the following condition is

satisfied: if the disc contains zeros of functions gj for j ∈ I ⊂ {0, . . . , n} then

(10) N(|w|, F ) ≤ max
j∈I′

N(|w|, gj) + C,

where I ′ is the complement of I in {0, . . . , n}.

We will later prove that this condition is necessary for normality of f .

These two conditions of normality of a curve f are formulated in terms of

parameters of formula (3) for the homogeneous coordinates. We give explicit

expressions of the functions N(r, gj) in terms of these parameters:

N(r, gj) = log |Aj | +mj log r +

∫

[1,r]

n(1, t, gj)
dt

t
.

Here n(r1, r2, gj) is the number of zeros of gj in the ring r1 < |z| ≤ r2.

Now we prove

Theorem 1. Conditions (8) and (10) are necessary and sufficient for normality

of a curve f with homogeneous representation (1), (3).

Necessity of condition (8) has already been proved in lemmas 2 and 3. To

prove the rest we use the following

Lemma 4. Let (fk) be a sequence of holomorphic curves, fk(z) = f(λkz), where

f has a homogeneous representation (1), (3). Suppose that condition (8) with

s = 0 holds for these curves uniformly with respect to k, and set

Fk(z) = (g0(λkz), . . . , gn(λkz)) = (gk,0, . . . , gk,n),

and

(11) hk(z) = exp(−N(0, Fk))z−N
′(0,Fk).

Choose a subsequence on which N(t, hkgk,j) tend to limits as k → ∞, and let I be

the set of indices j for which the limit is finite, and I ′ is the rest of the indices.

Then:

a) hkgj,k tend to limits, not identically equal to zero, for j ∈ I, and

b) hkgj,k tend to zero for j ∈ I ′.

Proof of the lemma. Condition (9) implies that

(12) N(t, Fk) ≤ C1(1 + t2),

for all k, t and some C1 > 0.
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We first prove a). We define functions hk by (11). These functions are holo-

morphic and zero-free because N
′(t, F ) are integers. For j ∈ I, the functions

N(t, hkgk,j) = N(t, gk,j) − N(0, fk) − N
′(0, fk)t

are convex, uniformly bounded on any interval, the jumps of their derivatives

are integers, so the total jump of the derivatives is bounded on every interval.

Moreover, this total jump is at most a constant times the length of the interval,

so we conclude that the gk,j have at most C|b − a| zeros on every interval [a, b],

so one can pass to the limit in formulas (3), after multiplication of these formulas

by the hk. So the coordinates with j ∈ I tend to non-zero limits, after choosing

a subsequence.

Now we prove b), that is that remaining coordinates tend to zero. We fix

some j ∈ I ′ and will omit it from the formulas, because all argument applies to

any such coordinate. We will also omit the index k to simplify our formulas. So

hg = hkgk,j . We are going to prove that

B(x) = log max
θ

|(hg)(ex+iθ)| → −∞,

uniformly for |x| ≤ log 2. We assume for simplicity of formulas that x = 0. We

represent hg as a canonical product of the form (3), and denote by n(r) the

number of zeros on the in the ring {z : 1 ≤ |z| ≤ r} if r > 1 or {z : r < |z| < 1}

if r < 1, and n(t) = n(et). Then we have

B(0) ≤ log |A| +

∫ ∞

1

log

(

1 +
1

ξ

)

dn(ξ) −

∫ 1

0

log(1 + ξ)dn(ξ).

Integrating by parts we obtain

B(0) ≤ log |A| +

∫ ∞

1

n(ξ)dξ

ξ(1 + ξ)
+

∫ 1

0

n(ξ)dξ

(1 + ξ)
.

Changing the variable ξ = et gives

(13) B(0) ≤ log |A| +

∫ ∞

−∞

n(t)dt

1 + e|t|
.

Here A is the number from (3) which depend on gh = gkhk.

On the other hand,

N(x, hg) = log |A| +mx+

∫

[0,x]

n(t)dt.

By integrating (13) by parts once more, we obtain

(14) B(0) ≤

∫ ∞

0

(N(t, hg) + N(−t, hg))
et

(1 + et)2
dt.
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Now N(0, hg) = log |A|, N is convex and N(t, hg) ≤ C1(1 + t2) in view of (12).

These conditions imply that

N(t, hg) ≤ 2(C1 +
√

−C1 log |A|)|t| + log |A|.

Substituting this inequality to (14), we obtain B(0) ≤ log |A|+C2

√

− log |A|+C3.

As A = Ak → 0, this completes the proof of the lemma.

Now necessity of condition (10) follows immediately because (10) is now the

same as (7): N(|z0|, hkgk,j) = log |hkgk,j(z0)| + O(1) when hkgk,j tends to a

non-zero limit as k → ∞.

Sufficiency also immediately follows from Lemmas 1 and 4. This completes the

proof of the theorem.

Now we compare the result with Ostrowski’s conditions. His conditions are:

a) The difference between the numbers of zeros and poles in any ring r1 < |z| < r2
is bounded uniformly with respect to r1, r2.

b) The number of zeros of each coordinate in rings r < |z| < 2r is bounded,

c) The distance between a zero of g0 and a zero of g1 is bounded from below.

d) There is a constant C such that for each zero w of gj , we have N(|w|, gj) ≤

N(|w|, g1−j) + C, j = 0, 1.

It is easy to see that our condition (10) with n = 1 implies c) and d). When

|I| = 2, it is c) and when |I| = 1, it is d).

Condition (8) with n = 1 implies b). Condition a), which in our notation

means that |N′(t, g0) − N
′(t, g1)| is bounded, is an easy consequence of (8) and

(10), when n = 1.

However, for n ≥ 2, conditions a) and b) do not have to hold. Here is a simple

example. Let

g0(z) =

∞
∏

j=0

(1 − 2−nz), g1(z) =

∞
∏

j=0

(1 + 2−nz),

and take as g2 any entire function with the property

T (r, g2) = O(log3/2 r), r → ∞.

It is easy to see that ψ = f0/f1 is a normal meromorphic function with all limits

limλ→∞ ψ(λz) non-constant, and

log |g3(z)| ≤ o(max{log |g0(z)|, log |g1(z)|}).
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These properties imply that the curve f with homogeneous coordinates

(g0, g1, g2) is normal, but g2 can be chosen so that the number of its zeros in some

rings r < |z| < 2r is unbounded.

The author thanks Masaki Tsukamoto for his questions that stimulated this

work and Sergei Favorov for a useful discussion.
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