Normal matrices

October 3, 2024

1. $||Tx|| = ||T^*x||$. This is not true for general matrices.

Proof. We have

$$(Tx, Tx) = (x, T^*Tx) = (x, TT^*x) = (T^*x, T^*x).$$

2. If $Tv = \lambda v$ then $T^*v = \overline{\lambda}v$. This is not true for general matrices.

Proof. $Tv=\lambda v$ implies $\|(T-\overline{\lambda}I)v\|=0$. So $\|(T^*-\overline{\lambda}I)v\|=0$, so $T^*v=\overline{\lambda}v$.

 $3. \,$ Eigenvectors of a normal matrix with distinct eigenvalues are orthogonal.

Proof. Let $Tv = \lambda v$, $Tu = \mu u$. Then

$$\lambda(u,v)=(u,Tv)=(T^*u,v)=\mu(u,v).$$

If $\mu \neq \lambda$ then (u, v) = 0.