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A linear ordinary differential equation of order n is

y(n) + an−1(x)y(n−1) + . . .+ a0(x)y = f(x), (1)

where a0, . . . , an−1 and f are given functions defined on some interval, y
is the unknown function, and y(k) = dky/dxk. Functions ak are called the
coefficients.

If f = 0 the equation is called homogeneous.
Solutions of a homogeneous equation form a vector space: if

y1, . . . , yk are solutions then any linear combination of them, c1y2 + c2y2 +
. . .+ ckyk is also a solution.

The difference of any two solutions of a non-homogeneous equation is
a solution of the homogeneous one (with the same LHS). So to find the
general solution of (1) it is sufficient to find one solution of (1) and the
general solution of the homogeneous equation. Then the general solution of
(1) will be the sum of a particular solution and the general solution of the
homogeneous equation.

Cauchy problem for equation (1) is to find a solution which satisfies the
initial conditions:

y(x0) = a0, y′(x0) = a1, . . . , y(n−1)(x0) = an−1.

The number of conditions is the same as the order n of the equation.

Existence and uniqueness theorem. If the coefficients and f are con-
tinuous functions on some interval I, and x0 is a point in I, then Cauchy
problem has a unique solution on I for any initial conditions y0, . . . , yn−1.

The interval I can be finite or infinite.
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It follows from this theorem that the vector space of solutions of a ho-
mogeneous equation on a given interval has dimension n (the order of the
equation). So to find the general solution, it is sufficient to find n linearly
independent ones. If y1, y2, . . . , yn are linearly independent solutions, then
the general solution is

y = c1y2 + . . .+ cnyn.

Very few equations of the form (1) can be solved explicitly, that is in terms
of elementary functions. The most important such type is equations with
constant coefficients. Consider first a homogeneous equation with constant
coefficients:

y(n) + an−1y
(n−1) + . . .+ a0y = 0. (2)

Let us look for a solutions of the form y(x) = eλx. Substituting this to the
equation and dividing on eλx we obtain a polynomial equation for λ:

λn + an−1λ
n−1 + . . .+ a0 = 0. (3)

By the fundamental theorem of algebra, this polynomial equation always
has solutions. Let us show that distinct roots of this equation give linearly
independent solutions. Let us take distinct roots λ1, . . . , λm. We have to
show that

c1e
λ1 + . . .+ cme

λm ≡ 0 (4)

implies that c1 = . . . = cm = 0. To do this we differentiate (4) m − 1
times and consider the resulting system of linear equations with respect to
ck (together with the original equation (4)):

m∑
k=1

ckλ
j
ke
λkx = 0, j = 0, . . . ,m− 1.

Plug x = 0, then the determinant of the system will be∣∣∣∣∣∣∣∣∣
1 1 . . . 1
λ1 λ2 . . . λm
. . . . . . . . . . . .
λm−11 λm−12 . . . λm−1m

∣∣∣∣∣∣∣∣∣ .

This is called the Vandermonde determinant, and we know from Linear Al-
gebra that it is not zero when all λj are distinct.
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A generic polynomial (3) will have n distinct (complex) roots, so our
method gives n linearly independent solutions of (2), and thus the general
solution.

If this polynomial has a multiple root λ, then one can show that together
with eλz, there is another solution xeλx, which is linearly independent from
the rest. In general, if λ is a root of multiplicity m of (3), then one can find
m linearly independent solutions,

eλx, xeλx, . . . , xm−1eλx,

which correspond to this root λ. Taking them all together, we obtain a basis
of solutions of (2).

Example 1. y′′ + a2y = 0, where a is real. The characteristic equation is
λ2 + a2 = 0. It has roots ±ia. We obtain two linear independent solutions
eiax, e−iax. To obtain two real linearly independent solutions we take linear
combinations

y1(x) = (eiax+e−iax)/2 = cos ax, and y2(x) = (eiax−e−iax)/(2i) = sin ax.

So the general real solution is y(x) = c1 cos ax+ c2 sin ax.

Non-homogeneous equation. There are three main methods of finding one
solution. a) guessing, b) the method of variation of constants, and c) Laplace
transform.

I will explain the method of variation of constants on a simple example

y′′ + a2y = f(x). (5)

The egeneral method is to look for a solution y with has the same form as the
general solution of the homogeneous equation, but with non-constant coef-
ficients, and try to find these coefficients. So for a second order equation,
we look for y in the form

y(x) = c1(x)y1(x) + c2(x)y2(x),

where y1, y2 are linearly independent solutions of the homogeneous equation.
We have

y′ = c1y
′
1 + c2y

′
2 + (c′1y1 + c′1y2). (6)

We impose the additional condition

c′1y1 + c′2y2 = 0, (7)
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so that the expression in parentheses in (6) vanishes. Then

y′′ = c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2.

Substituting this to (5) and using that y1, y2 satisfy y′′+a2y = 0, we see that
many things cancel, and what remains is

c′1y
′
2 + c′2y

′
2 = f. (8)

So we have two equations (7), (8) with two unknown functions c′1 and c′2.
Solving them by Cramer’s Rule, we obtain

c′1 =

∣∣∣∣∣ 0 y2
f y′2

∣∣∣∣∣∣∣∣∣∣ y1 y2
y′1 y2′

∣∣∣∣∣
, c′2 =

∣∣∣∣∣ y1 0
y′1 f

∣∣∣∣∣∣∣∣∣∣ y1 y2
y′1 y2′

∣∣∣∣∣
.

Using y1(x) = cos ax and y2(x) = sin ax, we compute the determinants and
obtain

c′1(x) = −1

a
f(x) sin ax, c′2 =

1

a
f(x) cos ax,

and c1, c2 can be found by integration. Putting all together we obtain a
partial solution of the non-homogeneous equation in the form

y(x) = −1

a
cos(ax)

∫ x

x0
f(t) sin(at)dt+

1

a
sin(ax)

∫ x

x0
f(t) cos(at)dt

=
1

a

∫ x

x0
f(t) sin (a(x− t)) dt.

You can check that this formula is correct by substituting it to equation (5).
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