Linear ordinary differential equations

A. Eremenko

January 26, 2021

A linear ordinary differential equation of order n is

$$
\begin{equation*}
y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{0}(x) y=f(x) \tag{1}
\end{equation*}
$$

where a_{0}, \ldots, a_{n-1} and f are given functions defined on some interval, y is the unknown function, and $y^{(k)}=d^{k} y / d x^{k}$. Functions a_{k} are called the coefficients.

If $f=0$ the equation is called homogeneous.
Solutions of a homogeneous equation form a vector space: if y_{1}, \ldots, y_{k} are solutions then any linear combination of them, $c_{1} y_{2}+c_{2} y_{2}+$ $\ldots+c_{k} y_{k}$ is also a solution.

The difference of any two solutions of a non-homogeneous equation is a solution of the homogeneous one (with the same LHS). So to find the general solution of (1) it is sufficient to find one solution of (1) and the general solution of the homogeneous equation. Then the general solution of (1) will be the sum of a particular solution and the general solution of the homogeneous equation.

Cauchy problem for equation (1) is to find a solution which satisfies the initial conditions:

$$
y\left(x_{0}\right)=a_{0}, \quad y^{\prime}\left(x_{0}\right)=a_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=a_{n-1}
$$

The number of conditions is the same as the order n of the equation.
Existence and uniqueness theorem. If the coefficients and f are continuous functions on some interval I, and x_{0} is a point in I, then Cauchy problem has a unique solution on I for any initial conditions y_{0}, \ldots, y_{n-1}.

The interval I can be finite or infinite.

It follows from this theorem that the vector space of solutions of a homogeneous equation on a given interval has dimension n (the order of the equation). So to find the general solution, it is sufficient to find n linearly independent ones. If $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent solutions, then the general solution is

$$
y=c_{1} y_{2}+\ldots+c_{n} y_{n}
$$

Very few equations of the form (1) can be solved explicitly, that is in terms of elementary functions. The most important such type is equations with constant coefficients. Consider first a homogeneous equation with constant coefficients:

$$
\begin{equation*}
y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y=0 \tag{2}
\end{equation*}
$$

Let us look for a solutions of the form $y(x)=e^{\lambda x}$. Substituting this to the equation and dividing on $e^{\lambda x}$ we obtain a polynomial equation for λ :

$$
\begin{equation*}
\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{0}=0 \tag{3}
\end{equation*}
$$

By the fundamental theorem of algebra, this polynomial equation always has solutions. Let us show that distinct roots of this equation give linearly independent solutions. Let us take distinct roots $\lambda_{1}, \ldots, \lambda_{m}$. We have to show that

$$
\begin{equation*}
c_{1} e^{\lambda_{1}}+\ldots+c_{m} e^{\lambda_{m}} \equiv 0 \tag{4}
\end{equation*}
$$

implies that $c_{1}=\ldots=c_{m}=0$. To do this we differentiate (4) $m-1$ times and consider the resulting system of linear equations with respect to c_{k} (together with the original equation (4)):

$$
\sum_{k=1}^{m} c_{k} \lambda_{k}^{j} e^{\lambda_{k} x}=0, \quad j=0, \ldots, m-1
$$

Plug $x=0$, then the determinant of the system will be

$$
\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{m} \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_{1}^{m-1} & \lambda_{2}^{m-1} & \ldots & \lambda_{m}^{m-1}
\end{array}\right|
$$

This is called the Vandermonde determinant, and we know from Linear Algebra that it is not zero when all λ_{j} are distinct.

A generic polynomial (3) will have n distinct (complex) roots, so our method gives n linearly independent solutions of (2), and thus the general solution.

If this polynomial has a multiple root λ, then one can show that together with $e^{\lambda z}$, there is another solution $x e^{\lambda x}$, which is linearly independent from the rest. In general, if λ is a root of multiplicity m of (3), then one can find m linearly independent solutions,

$$
e^{\lambda x}, x e^{\lambda x}, \ldots, x^{m-1} e^{\lambda x}
$$

which correspond to this root λ. Taking them all together, we obtain a basis of solutions of (2).

Example 1. $y^{\prime \prime}+a^{2} y=0$, where a is real. The characteristic equation is $\lambda^{2}+a^{2}=0$. It has roots $\pm i a$. We obtain two linear independent solutions $e^{i a x}, e^{-i a x}$. To obtain two real linearly independent solutions we take linear combinations
$y_{1}(x)=\left(e^{i a x}+e^{-i a x}\right) / 2=\cos a x, \quad$ and $\quad y_{2}(x)=\left(e^{i a x}-e^{-i a x}\right) /(2 i)=\sin a x$.
So the general real solution is $y(x)=c_{1} \cos a x+c_{2} \sin a x$.
Non-homogeneous equation. There are three main methods of finding one solution. a) guessing, b) the method of variation of constants, and c) Laplace transform.

I will explain the method of variation of constants on a simple example

$$
\begin{equation*}
y^{\prime \prime}+a^{2} y=f(x) . \tag{5}
\end{equation*}
$$

The egeneral method is to look for a solution y with has the same form as the general solution of the homogeneous equation, but with non-constant coefficients, and try to find these coefficients. So for a second order equation, we look for y in the form

$$
y(x)=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x),
$$

where y_{1}, y_{2} are linearly independent solutions of the homogeneous equation. We have

$$
\begin{equation*}
y^{\prime}=c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}+\left(c_{1}^{\prime} y_{1}+c_{1}^{\prime} y_{2}\right) . \tag{6}
\end{equation*}
$$

We impose the additional condition

$$
\begin{equation*}
c_{1}^{\prime} y_{1}+c_{2}^{\prime} y_{2}=0 \tag{7}
\end{equation*}
$$

so that the expression in parentheses in (6) vanishes. Then

$$
y^{\prime \prime}=c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}+c_{1}^{\prime} y_{1}^{\prime}+c_{2}^{\prime} y_{2}^{\prime} .
$$

Substituting this to (5) and using that y_{1}, y_{2} satisfy $y^{\prime \prime}+a^{2} y=0$, we see that many things cancel, and what remains is

$$
\begin{equation*}
c_{1}^{\prime} y_{2}^{\prime}+c_{2}^{\prime} y_{2}^{\prime}=f \tag{8}
\end{equation*}
$$

So we have two equations (7), (8) with two unknown functions c_{1}^{\prime} and c_{2}^{\prime}. Solving them by Cramer's Rule, we obtain

$$
c_{1}^{\prime}=\frac{\left|\begin{array}{ll}
0 & y_{2} \\
f & y_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2} \prime
\end{array}\right|}, \quad c_{2}^{\prime}=\frac{\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & f
\end{array}\right|}{\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2} \prime
\end{array}\right|} .
$$

Using $y_{1}(x)=\cos a x$ and $y_{2}(x)=\sin a x$, we compute the determinants and obtain

$$
c_{1}^{\prime}(x)=-\frac{1}{a} f(x) \sin a x, \quad c_{2}^{\prime}=\frac{1}{a} f(x) \cos a x
$$

and c_{1}, c_{2} can be found by integration. Putting all together we obtain a partial solution of the non-homogeneous equation in the form

$$
\begin{gathered}
y(x)=-\frac{1}{a} \cos (a x) \int_{x_{0}}^{x} f(t) \sin (a t) d t+\frac{1}{a} \sin (a x) \int_{x_{0}}^{x} f(t) \cos (a t) d t \\
=\frac{1}{a} \int_{x_{0}}^{x} f(t) \sin (a(x-t)) d t
\end{gathered}
$$

You can check that this formula is correct by substituting it to equation (5).

