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Recall that the space of all polynomials has a basis (in the usual sense),
namely 1, x, x2, . . .. However, as it was explained before, in infinite dimen-
sional spaces it is preferable to have a complete orthogonal system, rather
then a basis.

We can endow the space of polynomials with various dot products, and
find orthogonal bases by the process of orthogonalization described in the
handout “Sturm-Liouville”. In this way we obtain various systems of orthog-
onal polynomials, depending on the dot product.

All our spaces will be of the form L2
w(a, b) where a, b can be finite or

infinite, and w is a positive function on (a, b) which is called the weight. So
the dot product will be always defined by

(f, g)w =
∫ b

a
f(x)g(x)w(x)dx.

Three cases are the most important ones, they are called the classical
orthogonal polynomials, and we will study these three cases. It will turn out
that orthogonal polynomials are eigenfunctions of sertain singular Sturm–
Liouville problems.

We will not actually perform orthogonalization in each case, because in
all these three cases there exists a simple explicit formula for our orthogonal
polynomials. It is called the Rodriguez formula. These three cases bear
the name of French mathematicians of 19th century, Legendre, Laguerre and
Hermite.

1. Legendre polynomials Pn: (a, b) = (−1, 1), w(x) = 1.

2. Laguerre polynomials Lαn, where α > −1 is an additional parameter:
(a, b) = (0,∞), w(x) = xαe−x.

1



3. Hermite polynomials Hn: (a, b) = (−∞,∞), w(x) = e−x
2
.

It is important to notice that polynomials of all degrees indeed belong to
the space, that is

‖f‖2w =
∫ b

a
|f(x)|2w(x)dx <∞

for every polynomial f . Check this in each case.
All these polynomials have some common properties:

There is one orthogonal polynomial for each degree,

The orthogonal polynomial of degree n is orthogonal to all polynomials of
degree at most n− 1.

In the Legendre and Hermite cases, orthogonal polynomials of odd degree
are odd, and polynomials of even degree are even. This is because in these
two cases, the weight w is even.

They all have simple generating functions, and most importantly, satisfy a
simple differential equation.

Moreover, each sequence of orthogonal polynomials satisfies a 3-term recur-
rent relation (with respect to the degree).

Now we state their main properties exactly.

Legendre polynomials Pn.

Definition (Rodriguez formula):

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n =

(2n)!

2n(n!)2
xn + . . . .

First few:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P2(x) =

1

2
(5x2 − 3x), . . . .

Squared norms:

‖Pn‖2 =
2

2n+ 1
.

Differential equation in Sturm–Liouville form:(
(1− x2)P ′n(x)

)′
+ n(n+ 1)Pn(x) = 0.
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or, if we open parentheses

(1− x2)P ′′ − 2xP ′ + n(n+ 1)P = 0.

Generating function:

∞∑
0

Pn(x)zn =
1√

1− xz + z2
.

Recursion formula:

(n+ 1)Pn+1(x)− (2n+ 1)xPn + nPn−1(x) = 0.

Values at the ends:

Pn(1) = 1, Pn(−1) = (−1)n.

Laguerre polynomials Lαn.

Definition (Rodriguez formula):

Lαn =
x−αe−x

n!

dn

dxn

(
xα+ne−x

)
=

(−x)n

n!
+ . . . .

First few:

L0
0(x) = 1, L0

1(x) = −x+ 1, L0
2(x) =

1

2
(x2 − 4x+ 2), . . . .

Squared norms:

‖Lαn‖2 =
Γ(n+ α + 1)

n!
.

Differential equation in Sturm–Liouville form:(
xα+1e−x(Lαn)′

)′
+ nxαe−xLαn = 0.

or, if we open parentheses,

x(Lαn)′′ + (α + 1− x)(Lαn)′ + nLαn = 0.
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Generating function:

∞∑
0

Lαn(x)zn =
e−xz/(1−z)

(1− z)α+1
.

Recursion formula:

(n+ 1)Lαn+1(x) + (x− α− 2n− 1)Lαn(x) + (n+ α)Lαn(x) = 0.

Hermite polynomials Hn.

Definition (Rodrigues formula):

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

= 2nxn + . . . .

First few:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, . . . .

Differential equation in Sturm–Liouville form:(
e−x

2

H ′n
)′

+ 2ne−x
2

Hn = 0

or, if we open parentheses,

H ′′n − 2xH ′n + 2nHn = 0.

Generating function:
∞∑
0

Hn(x)
zn

n!
= e2xz−z

2

.

Recursion formula:

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0.

Boundary conditions.
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Here we state without proofs the appropriate boundary conditions which
ensure that our orthogonal polynomials are eigenfunctions.

1. Consider the Legendre equation(
(1− x2)y′

)′
+ λy = 0. (1)

This equation has two singularities: ±1. If one tries to find a power series
solution of the form

y(x) = (x− 1)ρ
∞∑
0

ak(x− 1)k, a0 6= 0,

one finds that the characteristic equation has only one root ρ = 0, and this
indicates that there is one power series solution, while the other linearly
independent solution is unbounded near x = 1 (in fact its expansion contains
logatithm). Similar situation prevails at the other singular point −1.

The condition that Legendre’s equation has a non-zero solution which is
bounded on both ends implies that λ = n(n + 1) for some integer n ≥ 0. So
one can say that the Sturm–Liouville problem (1) with boundary conditions:

y(±1) are both finite

has eigenvalues λn = n(n + 1), n = 0, 1, 2 . . . and eigenfunctions Pn, the
Legendre polynomials.

2. For the Laguerre equation

(xα+1e−xy′)′ + λxαe−xy = 0, (2)

the power series method applied to the endpoint x = 0 shows that there
is one solution which is analytic at 0 (=expands into a power series with
non-negatiove integer powers), while the other linearly independent solution
behaves like x−α when α 6= 0 or like log x when α = 0, as x → 0. So when
α ≥ 0, the boundary condition is that the solution stays bounded as x→ 0.
When α ∈ (−1, 0) this is relaced by the condition that derivative of the
solution stays bounded.

The other boundary condition is that y ∈ L2
w(0,∞). This is the condition

on the growth of the solution at infinity.
With these two boundary conditions, problem (2) has eigenvalues λn =

n, n = 0, 1, 2, 3 . . . , and eigenfunctions are Laguerre polynomials.
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3. For the Hermite equation(
e−x

2

y′
)′

+ λe−x
2

y = 0, (3)

the appropriate boundary condition is the requirement that y ∈ L2
w(−∞,+∞)

(this is essentially a growth restriction on both ends), and the problem (3)
with this boundary condition has eigenvalues λn = 2n and eigenfunctions
Hn, the Hermite polynomials.

Associated Legendre equation and corresponding BVP

We will also need the differential equation(
(1− x2)S ′

)′
− m2S

1− x2
+ λS = 0, (4)

which is called the associated Legendre equation. Here m is a non-negative
integer; when m = 0 this coinsides with the Legendre equation.

Solutions are obtained by differentiating the Legendre equation (1) m
times and setting

S(x) = (1− x2)m/2y(m),

where y satisfies Legendre’s equation. The details of this somewhat tedious
calculation are given on p. 175-176 of the book. So when y = Pn is a
Legendre polynomial, we obtain the so-called associated Legendre functions
(they are not polynomials when m is odd!)

Pm
n (x) = (1− x2)m/2P (m)

n (x) =
(1− x2)m/2

2nn!

dn+m

dxn+m
(x2 − 1)n,

where we used the Rodrigues formula for Legendre polynomials. Notice that
Pm
n = 0 for m > n. So to each n correspond one Legendre polynomial Pn

and m associated Legendre functions Pm
n , m = 1, . . . ,m. These associated

Legendre functions solve the Sturm-Liouville problem (4) with the bounbdary
conditions

S(1) = S(−1) = 0.

Furthermore,
For each m ≥ 1, associated Legendre functions (Pm

n )∞n=m make an orthog-
onal basis in L2(−1, 1), and

‖Pm
n ‖2 =

2

2n+ 1

(n+m)!

(n−m)!
.
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