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Abstract

We study real solutions of a class of Painlevé VI equations. To
each such solution we associate a geometric object, a one-parametric
family of circular pentagons. We describe an algorithm which permits
to compute the numbers of zeros, poles, 1-points and fixed points of
the solution on the interval (1,+∞) and their mutual position. The
monodromy of the associated linear equation and parameters of the
Painlevé VI equation are easily recovered from the family of pentagons.
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mal mapping, ordinary differential equations, isomonodromic defor-
mations.

0. Introduction

Consider a linear differential equation

w′′ − Pw′ +Qw = 0, (1)

where P and Q are rational functions of the complex independent variable,
and assume that all singularities are regular, and all parameters (singular
points, exponents and accessory parameters) are real. Then the ratio f =
w1/w2 of two linearly independent solutions maps the upper half-plane onto a
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circular polygon (see Section 3 below for a precise definition). Every simply
connected circular polygon can be obtained this way. Klein [31] and Van
Vleck [44] used this connection between differential equations with three
singularities and circular triangles to count zeros and poles of hypergeometric
functions. We use a similar idea to count special points on a real interval of
real solutions of Painlevé VI equations
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where q is a function of x, and κj are real parameters. By definition, special
points of a solution are those points x for which q(x) ∈ {0, 1, x,∞}, the points
where the assumptions of the existence and uniqueness theorem of Cauchy
are violated.

Equation (2), which we call PVI, was originally discovered by Picard [40],
Painlevé [39] and Gambier [19] as the most general equation of the form

qxx = R(qx, q, x), (3)

where R is a rational function of qx, q whose coefficients are analytic in x,
and whose solutions have no movable singularities (poles are not counted as
singularities). For PVI, this means that all solutions admit a meromorphic
continuation in the region C\{0, 1}. Painlevé and Gambier classified all
equations (3) without movable singularities, and found that all except six of
them can be reduced to linear or first order differential equations. Of the
six remaining equations, PVI is the most general, in the sense that the other
five can be obtained from it by certain degeneration process.

Meanwhile, Richard Fuchs [18] independently discovered (2) as the condi-
tion of isomonodromic deformation of a linear differential equation (1) with
five regular singularities, one of them apparent with exponents 0 and 2.
Later it was found that Painlevé equations arise in a variety of problems of
mathematics and physics [9, 24, 32, 34], and their solutions, called Painlevé
transcendents, gradually gain the status of special functions.

Besides applications, most work on PVI falls into three categories: a)
transformations of the equation [37, 28], b) search for special solutions, like
algebraic ones [33] or those expressed in terms of classical special functions
[24], and c) asymptotics at the fixed singularities 0, 1,∞, [30, 23].
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In this paper, we study real solutions of PVI with real parameters κj
on a real interval, one of the three intervals between the fixed singularities
(0, 1,∞). It is sufficient to consider the interval (1,∞). Our main result
is a combinatorial algorithm (which can be performed without a computer)
which determines the number of special points and their mutual position on
the interval. The outcome of the algorithm is a sequence of symbols 0, 1, x,∞
which shows in which order the solution q(x) of (2) takes these four values
as x increases from 1 to ∞. For example, an outcome sequence (0, 1, 1, x,∞)
means that for the solution q(x) there are points 1 < x1 < x2 < x3 < x4 <
x5 < +∞ such that

q(x1) = 0, q(x2) = q(x3) = 1, q(x4) = x4, q(x5) = ∞,

and no other special points on (1,+∞). The sequence of special points can
be finite, or infinite in one direction, or infinite in both directions.

In particular, we describe those solutions which have no special points on
(1,∞). Theorem 1 in section 10 implies that

Every PVI equation with real parameters κj has a real solution without
special points on (1,+∞). The projective monodromy representation of the
auxiliary linear equation (4) corresponding to such a solution satisfies the
condition that for some j ∈ {1, . . . , 4} the generators Tj−1 and Tj share the
fixed point where their multipliers are e2πiκj−1 and e2πiκj . For given parame-
ters κj, there can be at most one-dimensional family of such solutions.

For a more precise formulation, see section 10. This theorem allows us to
give new proofs of the recent results in [6, 7] for the case of real solutions.

So we obtain global, exact (non-asymptotic) results describing qualitative
features of a quite general class of solutions, namely real solutions.

We do this by exploring the connection with a linear differential equation
of the type (1) with 5 regular singularities, one of them apparent, discovered
by Fuchs (equation (4) below). When all parameters of this linear equation
are real, the ratio f of any two linearly independent solutions of (4) maps
the upper half-plane onto a circular pentagon of a special kind: it is a cir-
cular quadrilateral, (or triangle, or digon) with a slit. We call such circular
pentagons special pentagons. Simple examples of special pentagons can be
seen in Figs. 9, 10ac, 12ac, 13aceg, 14.

All our results are stated in terms of these special pentagons correspond-
ing to particular solutions. The monodromy of equation (4) is easily recovered
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from the pentagon. Construction of the pentagon from the monodromy is
described in Appendix I.

If the f -preimage of the tip of the slit is not counted as a vertex, our
special pentagon can be considered as a conformal quadrilateral. A real
solution of PVI describes the relation between the conformal modulus of
this quadrilateral and the f -preimage of the tip of the slit. For some values
of the modulus the slit vanishes or becomes a cross cut, and the pentagon
becomes a circular quadrilateral. These values of the modulus correspond
to special points of the PVI solution. Thus the study of the number and
mutual position of these special points is equivalent to a geometric problem
of describing the evolution of a one-parameter family of special pentagons.

At a special point, the pentagon undergoes one of the four possible trans-
formations which are described in section 7.

Our algorithm consists of drawing a sequence of special pentagons accord-
ing to these transformation rules. As the sides of the pentagons belong to
fixed circles which do not change under our transformations, the algorithm
is of purely combinatorial nature.

More precisely, the algorithm can be described as follows:
We start with a special pentagon. Then we shorten or lengthen the slit.

When the slit shortens and vanishes, or when it lengthens, hits the boundary
and splits the pentagon, several cases may occur:

a) the conformal modulus degenerates, which means that x → 1 or x →
+∞, and the algorithm stops.

b) the conformal modulus does not degenerate, in which case we apply one
of the transformations 1-4 described in section 7, and repeat the procedure
with the new special pentagon.

To each transformation 1-4 of Section 7 corresponds a special point.

In the simplest cases, our pentagons are subsets of the sphere, so drawing
them presents no difficulty. In the general case, the pentagons are not subsets
of the sphere (their angles and sides can be arbitrarily large), and one needs
a special tool for describing them.

We do this using a representation of circular polygons by cell decom-
positions of a disk which are called nets. This method was developed in
[10, 14, 11, 15, 16] for other problems.

We are grateful to C.-S. Lin who shared with us the result from his
unpublished preprint [6] which stimulated this paper. We also thank Philip
Boalch, Galina Filipuk, Alexander Its, Maxim Kontsevich, Oleg Lisovyy, Yan
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Soibelman and Vitaly Tarasov for illuminating discussions of PVI, and the
anonymous referees whose suggestions improved the exposition.

1. A class of linear differential equations

We consider the class of linear differential equations (1) of the form

w′′ −
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where
(t1, t2, t3) = (0, 1, x), (5)

x > 1, κj ≥ 0, p and q are real numbers. We impose the following conditions:
a) ∞ is a regular singularity, with exponent difference κ4 ≥ 0,
b) q is an apparent singularity, but the singularities at (0, 1, x,∞) are not

apparent (have non-trivial local projective monodromy).
It follows from the form of (4) that the exponents at q are 0 and 2,

and tj are regular singularities with exponents 0 and κj for 1 ≤ j ≤ 3.
The exponents at ∞ are determined from the Fuchs relation and from the
assumption that their difference is κ4.

Conditions a), b) determine the hj uniquely in terms of p, q, x and κj, 1 ≤
j ≤ 4, by solving the following system of linear equations:
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Equations (6) and (7) correspond to condition a), while equation (8) corre-
sponds to condition b).

The determinant of this system is

x(x− 1)

q(q − 1)(q − x)
,
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Figure 1: Loops defining M1, M2, M3, and M4.

thus for given real κj ≥ 0, p, x 6∈ {0, 1}, and q 6∈ {0, 1, x} the coefficients hj
are uniquely defined real numbers. Our notation in (2) and (4) is the same as
in [28], but we notice a misprint in the first line of [28, (2.1)]: q must be qx.

2. Isomonodromic deformation and PVI

Let us choose the generators γj of the fundamental group of Ω = C\{0, 1, x},
so that γ1γ2γ3γ4 = 1, as shown in Fig. 1.

Let (w1, w2) be a pair of linearly independent solutions of (4) normalized
by

(

w1(x0) w2(x0)
w′

1(x0) w′
2(x0)

)

= I. (9)

Performing an analytic continuation of these solutions along an element γ ∈
π1(Ω, x0) we obtain

(wγ
1 , w

γ
2 ) = (w1, w2)Mγ

for some Mγ ∈ GL(2,C). Notice that the map γ 7→ Mγ is an anti-represen-
tation of the fundamental group1

For the ratio f = w1/w2 we obtain

fγ = Tγ ◦ f,

where Tγ is a linear-fractional transformation. We identify the group of
linear-fractional transformations with PSL(2,C) = SL(2,C)/{±I}, and the
quadruple (T1, T2, T3, T4) is the set of generators of the projective monodromy

1For the fundamental group we use the standard notation: product γ1γ2 means that
the path γ1 is followed by the path γ2.
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representation π1(Ω, x0) → PSL(2,C). The correspondence γ → Tγ is a
group homomorphism. The generators are chosen so that

T1T2T3T4 = id, (10)

and we assume that
Tj 6= id, 1 ≤ j ≤ 4. (11)

For the matrices representing the generators Tj we use the same letters, and
they are related to the matrices Mj by

Tj =
1

√

detMj

MT

j , 1 ≤ j ≤ 4,

where T stands for the transposition.
When the parameters κj are fixed, the projective monodromy represen-

tation of equation (1) depends on x, p and q.
When we change x and deform the loops continuously, the condition that

the monodromy matrices do not change is that p = p(x) and q = q(x) satisfy
the following non-autonomous Hamiltonian system [28, (3.7)]:

dq

dx
=
∂h

∂p
,

dp

dx
= −∂h

∂q
.

Here the Hamiltonian h = h3 (see (4) for the definition of h3) is given by

x(x− 1)h = q(q − 1)(q − x)p2

− {(κ3 − 1)q(q − 1) + κ1(q − 1)(q − x) + κ2q(q − x)} p
+ κ0(κ0 + κ4)(q − x),

where
κ0 = (1− κ1 − κ2 − κ3 − κ4)/2.

This Hamiltonian system is equivalent to (2). All solutions of PVI are ob-
tained in this way.

Special points of q(x) correspond to collisions of the singular point q
with one of the four other singular points of equation (4). Thus when x is a
special point, (4) becomes an equation with four regular singularities (Heun’s
equation).

In this paper we consider parameters κj ≥ 0, 1 ≤ j ≤ 4, and real solutions
q(x) of (2) defined for x ∈ (1,+∞). In view of the formulas (6), (7), (8), in
this case all parameters in (4) are real.
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The condition on the monodromy matrices that ensures that the solution
of PVI is real is discussed in Appendix I.

Remark. A more general class of real equations (2) is obtained by allowing
some κj be pure imaginary. In this case, equation (4) also has a geometric
interpretation [41], but very different from the interpretation in this paper:
the developing map f (defined in the next section) still maps the upper half-
plane onto a Riemann surface bounded by four circles, but when some κj are
imaginary, this Riemann surface has infinitely many sheets.

3. Circular polygons

A circular n-gon is a bordered surface homeomorphic to a closed disk,
spread over the sphere without ramification points in the interior, and such
that the border consists of n arcs and n points separating them, so that each
arc projects into a circle on the sphere locally injectively.

Some circular polygons can be visualized as subsets of the Riemann
sphere, see Figs 12, 13, 15, which represent circular pentagons and quadri-
laterals. But this is not always the case, because we allow arbitrarily large
interior angles and arbitrarily long sides.

To give a more formal definition, we denote by S the conformal sphere
(the unique compact simply connected Riemann surface). A circle in S can
be defined by using only the conformal structure: it is the set of fixed points
of an anti-conformal involution. Conformal automorphisms of S send circles
to circles.

Let D be a conformal closed disk2, and let {tj} be n distinct boundary
points enumerated according to the standard orientation of ∂D. In what
follows we understand the subscript j in tj and in other similar notations as
a residue modulo n.

A developing map is a continuous function f : D → S which is holomor-
phic in D\{t1 . . . , tn} and satisfies

f ′(z) 6= 0, z ∈ D\{t1, . . . , tn}, (12)

f(z) = f(tj) + (cj + o(1))(z − tj)
αj as z → tj, (13)

where αj > 0 and cj ∈ C∗, or

f(z) = f(tj) + (cj + o(1)/ log(z − tj) as z → tj, (14)

2The closure of a Jordan region.

8



and such that f([tj−1, tj]) are contained in some circles Cj ⊂ S. Here and
in what follows we denote by [tj−1, tj] and (tj−1, tj) the closed and open arcs
of the boundary ∂D beginning at tj−1 and ending at tj. Formulas (13), (14)
need an evident modification if f(tj) = ∞, or f(z) = ∞ in (12). The circles
Cj need not be distinct. A circular n-gon is identified with the ordered set

(D, t1, . . . , tn, f). (15)

Sometimes we will omit the word “circular”, calling these objects simply
polygons (digons, triangles, quadrilaterals, etc.)

Two circular polygons

(D1, t
′
1, . . . , t

′
n, f1) and (D2, t

′′
1, . . . , t

′′
n, f2) (16)

are considered equal if there exists a conformal map φ : D1 → D2 such that
φ(t′j) = t′′j and f1 = f2 ◦ φ. If the last equality is replaced by f1 = L ◦ f2 ◦ φ,
where L ∈ AutS then the two polygons are called equivalent.

The points tj are called corners and the arcs (tj−1, tj) sides of a polygon.
The angle at tj is defined as αj in (13), and we set αj = 0 if (14) holds.

Notice that we measure the angles in half-turns rather than radians.
We denote by Cj the circle containing f([tj−1, tj]). Then we obtain n

labeled circles with the property that

Cj ∩ Cj+1 6= ∅, j ∈ Zn. (17)

Indeed, f(tj) belongs to this intersection. Any such sequence of circles will
be called an n-circle chain, or simply a chain when it is clear what n is.

Notice that 0-gons are just disks, while 1-gons are disks with one marked
point where the angle is 1.

Sometimes it will be convenient to use a Riemannian metric on our poly-
gons. To introduce it, start with the standard spherical Riemannian metric
of curvature 1 on S and pull it back to D via f . The resulting metric ρ on
D is a conformal Riemannian metric of curvature 1 on D\{t1, . . . , tn}, has
conic singularities with the angles αj at tj, and each side (tj, tj+1) has con-
stant geodesic curvature. All metric spaces with these properties arise from
circular polygons.

In what follows the word “distance” will always mean intrinsic distance:
the infimum of lengths of curves connecting two points, where the length
of a curve is measured using the intrinsic metric. The area of an n-gon

9



D

D

D

D

1

2

`

`̀

j

j

f
1

f
2

2

1g

Figure 2: Gluing a quadrilateral and a triangle

is also measured in the pull-back spherical metric. It is easy to see that
all our polygons have finite areas, moreover, the preimages of points under
developing maps are finite.

Polygons are equal if and only if the corresponding metric spaces are
isometric. Of course, equivalent polygons may be different as metric spaces3.

Gluing of two polygons.

We will use the operation of gluing circular polygons along a “matching”
boundary arc. Suppose that for two polygons in (16), D1 and D2 are the
upper and lower halves of the unit disk, the interval (−1, 1) contains no
corners of either polygon, and is mapped by f1 and f2 to the same arc of a
circle4. Then there exist a simple curve γ in the unit diskD with endpoints at
±1 dividing D into two regions D′ and D′′, and conformal homeomorphisms
φ1 : D′ → D1 and φ2 : D′′ → D2 such that φj(±1) = ±1 and f1 ◦ φ1(z) =
f2 ◦ φ2(z), z ∈ [0, 1], see Fig. 2. Such conformal homeomorphisms φj exist
by a theorem of Lavrentiev, [21, Ch. VI, §1]. Then

f(z) =

{

f1 ◦ φ1(z), z ∈ D′

f2 ◦ φ2(z), z ∈ D′′

extended by continuity on γ, is the developing map of a new polygon which
is called the gluing of our two polygons along the common boundary arc.

Lengthening and shortening of the slit.

3One could use only PSL(2,C)-invariant notions, like cross-ratios instead of distances
etc., as Klein does. But we find the metric notions more convenient and more intuitive.

4This “arc” can be longer than the whole circle. The precise meaning is that there is
an increasing diffeomorphism ψ : [−1, 1] → [−1, 1] such that f2(t) = f1 ◦ ψ(t), t ∈ [−1, 1].
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Consider an (n + 1)-gon Q = (D, t1, . . . , tn; q, f), where the corner q can
be anywhere between the tj, this is why we use a different notation for this
corner. Suppose that the angle at q equals 2 and the f -images of the two sides
meeting at q belong to the same circle C. (If q ∈ (tk−1, tk) then C = Ck.)
This means that f maps a small neighborhood V of q in D homeomorphically
onto a disk centered at f(q) with a slit from the center to the circumference
along an arc of the circle C.

In this situation we say that the polygon has a slit, and b := f(q) is called
the tip of the slit. The slit itself is formally defined as follows:

The slit is the maximal interval [t, t′] such that q ∈ [t, t′] ⊂ [tk−1, tk] and
the intrinsic lengths of [t, q] and [q, t′] are equal.

Examples can be seen in Fig. 3a,c where the tip of the slit is labeled by q.
Consider the small arc γ ⊂ D with endpoints q and c ∈ D which is defined

by γ = f−1(C) ∩ V .
Let φ be a conformal map of D onto D\γ. Then f1 = f ◦φ defines a new

(n+1)-gon with corners t′j = φ−1(tj) for 1 ≤ j ≤ n and q′ := φ−1(c). We say
that this new polygon is obtained from the old one by lengthening the slit,
and the old polygon is obtained from the new one by shortening the slit.

Here is an alternative explanation of lengthening or shortening of the
slit. Suppose that D = H and q ∈ (tk−1, tk). As the sides (tk−1, q) and
(q, tk) are mapped by f to the same circle C, we can extend f by reflection
to the lower half-plane H∗. The resulting function f̃ is meromorphic in
G = H ∪H∗ ∪ (tk−1, tk), maps (tk−1, tk) into a circle C and has exactly one
simple critical point at q. Let σ be the reflection in C. Choose a small
disk B centered at f(q) and let V ⊂ G be the component of f̃−1(B) which
contains q. Let ψs be a family of diffeomorphisms of the sphere S, which
commutes with σ, whose restriction to S\B is the identity map, and which
moves f̃(q) to a point s ∈ C near f(q). Then the main existence theorem
for quasiconformal mappings in [2] implies that there is a quasiconformal
homeomorphism φs : G → G which commutes with complex conjugation
and such that fs = ψs ◦ f̃ ◦φs is holomorphic. The restriction of fs onto H is
the developing map of the deformed polygon Q′ = (H, t′1, . . . , t

′
n; q

′, fs) where
t′j = φ−1

s (tj) and q
′ = φ−1

s (q). The dependence of fs on s is real analytic.

Whenever we have a slit it can be lengthened or shortened. This operation
does not affect the angles, the chain of the polygon, or the images of the sides
other than those two meeting at q.

4. Relation between equation (4) and a class of circular pentagons
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We consider equation (4) satisfying conditions a) and b) after (4).

Proposition 1. If p ∈ R, x > 1, and q ∈ R\{0, 1, x}, then the ratio f
of any two linearly independent solutions of (4) is the developing map of a
circular pentagon with D = H, and corners at (t1, t2, t3, t4) = (0, 1, x,∞)
and q, with the angles κj at tj, 1 ≤ j ≤ 4, and 2 at q. The f -images of the
two sides meeting at q belong to the same circle.

Conversely, the developing map of every circular pentagon with such prop-
erties is the ratio of two solutions of an equation (4) satisfying conditions a),
b), with all parameters real, and 0, 1, x, q all distinct.

The projective monodromy group of (4) consists of the products of even
numbers of reflections in the circles containing the f -images of the sides of
the pentagon. Condition (11) holds if and only if no pair of sides meeting at
tj, 1 ≤ j ≤ 4, is mapped by the developing map into the same circle.

Notice that q can be on any of the four intervals (tj−1, tj), j ∈ Z4.

Proof. Let f = w1/w2 be the ratio of linearly independent solutions. Then
f ′ = (w′

1w2−w1w
′
2)/w

2
2, so f is locally univalent in the upper half-plane. If we

impose real initial conditions at some real non-singular point, both solutions
will be real, and f will be real on the interval between the singularities
containing this point. Any other initial condition will give new f related to
the old one by a linear-fractional transformation, so f(z) maps every interval
between the singular points onto an arc of a circle. The exponents at a
singular point tj are 0 and κj if 1 ≤ j ≤ 4, so locally f(z) behaves as in (13),
(14). At the point q, the exponents are 0 and 2, so the angle is 2, and this
point is a removable singularity of f by condition b) after (4), so the sides
meeting at q are mapped to the same circle.

For the converse statement, suppose that a circular pentagon with D = H
is given, with the angles (κ1, κ2, κ3, κ4) at (0, 1, x,∞) and 2 at q, such that
the sides meeting at q are mapped by f into the same circle. Then f extends
by reflections to the universal cover of C\{0, x, 1,∞}, and the monodromy of
the extended map is a subgroup of PSL(2,C), the group of linear-fractional
transformations. This means that the Schwarzian derivative

R :=
f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

(18)

is single valued, and the local behavior at tj and q implies that R has poles
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of order two with

R(z) =
1− κ2j

2(z − tj)2
+ . . . , as z → tj,

R(z) = − 3

2(z − q)2
+ . . . , as z → q,

and similarly at infinity, so R is a rational function. As the intervals of the
real line between the singularities are mapped to arcs of circles, R is real on
the real line. As tj, q and κj are real, we conclude that the residues of R
are also real. Then the general solution of the Schwarz differential equation
(18) is a ratio of two linearly independent solutions of (4), see, for example
[20], [26]. The condition that the images of the sides meeting at q belong
to the same circle ensures that f has trivial monodromy at q, so q is an
apparent singularity with exponents 0 and 2. This completes the proof of
Proposition 1.

If Ck is the circle containing f([tk−1, tk]) then (C1, C2, C3, C4) is a chain
of four circles for which (17) holds and

Cj 6= Cj+1, j ∈ Z4 (19)

in view of the condition (11). If we denote by σj the reflection in Cj, then
the projective monodromy generators are

Tj = σjσj+1, j ∈ Z4. (20)

This assumes that the fundamental group generators are chosen as in Fig. 1.
To prove (20) we notice that each loop γj, 1 ≤ j ≤ 3, first crosses the
interval (tj−1, tj) from H to the lower half-plane, and crosses (tj, tj+1) back
to H. The first crossing corresponds to the reflection σj and the second to
the reflection in the circle σjCj+1. This second reflection is σjσj+1σj, so the
whole continuation around tj is performed with the reflection

σjσj+1σjσj = σjσj+1,

as stated.
If a projective monodromy representation satisfies (20) with some re-

flections σj, we say that this representation is generated by reflections. In
Appendix I we will find the necessary and sufficient conditions for Tj to be
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generated by reflections, and will show how to find the σj when these con-
ditions hold. We will see that the reflections σj are uniquely defined by the
monodromy generators, except in the case when all these generators com-
mute.

5. Special pentagons

The previous section motivates consideration of pentagons with one angle
equal to 2, and the sides forming this angle mapped into the same circle by
the developing map, while each pair of sides meeting at one of the other
corners is mapped by the developing map to distinct circles.

We call them special pentagons and use the following notation

Q = (D, t1, t2, t3, t4; q, f),

where tj are naturally ordered corners with angles αj, while q is the corner
with angle 2 which can lie on any arc between the tj, and the sides meeting at
q are mapped by f to the same circle, while the circles containing f([tj−1, tj])
and f([tj, tj+1]) are distinct for all j ∈ Z4.

This notation is slightly inconsistent with our general notation for a cir-
cular pentagon, because only tj are listed in their natural order, while q can
be on any interval between them. To stress this, we separate q from the tj
by a semi-colon.

We recall that a conformal quadrilateral 5 is a simply connected Riemann
surface, which is conformally equivalent to a disk, with 4 marked prime ends6.
Conformal equivalence of conformal quadrilaterals means the existence of a
conformal map between them which maps the marked points to the marked
points.

Each conformal quadrilateral is conformally equivalent to a rectangle
whose marked boundary points are the corners.

We consider special pentagons

Q = (D, t1, . . . , t4; q, f)

as conformal quadrilaterals (D, t1, . . . , t4), forgetting the corner q, and define
the modulus

modQ ∈ (0,∞)

5Not to be confused with circular quadrilateral!
6For a Jordan region in the plane prime ends are just boundary points. For general

simply connected regions we refer to [1].
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as the extremal distance in D between the segments [t1, t2] and [t3, t4] of ∂D.
For the definition and general properties of the extremal distance we refer to
[1] and Appendix III.

To avoid confusion with the sides of a pentagon as defined before, we
use the word segments to denote [tj, tj+1] ⊂ ∂D. Thus one of the segments
consists of two sides of the pentagon and contains q, while each of the other
three segments is the closure of one side of the pentagon.

Every conformal quadrilateral is equivalent to (H, 0, 1, x,∞) for some x ∈
(1,∞). With our convention that (t1, t2, t3, t4) = (0, 1, x,∞), the modulus
is a strictly increasing function of x, mapping (1,+∞) onto (0,+∞). An
explicit expression of this function can be found in [1] but we do not need
this formula.

To state the properties of the extremal distance that we need, we use the
intrinsic distance on D defined in section 3.

Lemma 1. ([15, Lemma 13.1] and Lemma A4 in Appendix III.) Consider a
sequence of special pentagons Qn whose areas are bounded from above. If the
intrinsic distance between [t1, t2] and [t3, t4] tends to zero, while the intrinsic
distance between [t2, t3] and [t4, t1] stays away from zero, then modQn → 0. If
the intrinsic distance between [t2, t3] and [t4, t1] tends to 0 while the intrinsic
distance between [t1, t2] and [t3, t4] stays away from zero then modQn → ∞.

6. Local families of special pentagons

We recall that f(q) is called the tip of the slit. The slit can be lengthened
or shortened with f(q) moving on a circle. Lengthening or shortening the slit
along the circle while keeping all circles of the chain unchanged, we obtain a
one-parametric family of special pentagons, parametrized by some interval.
We choose the length of the slit as parameter.

Lemma 2. As a function of the length of the slit, modQ is monotone. It
is strictly increasing if q ∈ (t2, t3) ∪ (t4, t1) and strictly decreasing if q ∈
(t1, t2) ∪ (t3, t4).

This follows from the standard properties of the modulus, [1, 4.3] and
Lemma A3 in Appendix III.

As the slit shortens, it eventually vanishes, and we obtain a polygon with
at most 4 sides. As the slit becomes longer, it eventually hits the boundary
and becomes a cross-cut which splits D into two polygons.
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Such a family, obtained from a special pentagon by shortening the slit
until it vanishes and lengthening the slit until it hits the boundary, will be
called a local family of special pentagons. It is parametrized by an open
interval (for example, the length of the slit), and corresponds to an open
interval on the ray (1,+∞) in view of Lemma 2.

In the remainder of this section we will study in detail what happens
at the ends of a local family. In the next section we will see how local
families are combined into a global family of special pentagons, parametrized
by x ∈ (1,+∞), so that the special pentagons of the global family depend
continuously and even real-analytically on x.

Consider a local family of special pentagons Qx parametrized by x ∈ I
where I is an interval in (1,∞).

We say that the modulus degenerates if modQx → 0 or modQx → ∞ as
x tends to an endpoint of I. This means that this endpoint must be 1 or ∞.

First we state the conditions of degeneracy.
Suppose that q ∈ (tk−1, tk). Suppose that the slit shortens and vanishes,

then q must collide with a corner tk−1 or tk. If the intrinsic length of [tk−1, q]
is strictly smaller than the intrinsic length of [q, tk] then q will collide with
tk−1. If the intrinsic length of [tk−1, q] is strictly greater than the intrinsic
length of [q, tk] then q will collide with tk. In both cases we obtain a non-
degenerate quadrilateral in the limit, so x tends to some x0 ∈ (1,∞), and
x0 is a special point with the value q(x0) = t, where t ∈ {tk−1, tk} is the
corner with which q collided. If the intrinsic lengths of [tk−1, q] and [q, tk]
are equal, then as the slit shortens and vanishes, tk−1 and tk collide, and the
limit polygon is a triangle or a digon.

The degeneracy condition is thus the following:

D1. When the slit shortens and vanishes, modQx degenerates if and only
if two corners collide in the limit.

In other words, our special pentagon must be a slit triangle with the slit
originating at some vertex A, or a slit digon. Notice that the angle of the
triangle at A may be an integer, and the images of sides of the triangle which
are adjacent at A may belong to the same circle. If this integer is 1 we have
a digon instead of a triangle.

Degeneration with shortening slit is illustrated in Fig. 9. When the sit
vanishes, two corners at 0 collide.

Now suppose that the slit lengthens. Then eventually it will hit the
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boundary from inside at some point s ∈ ∂H.

This means that f(s) belongs to the circle of the slit (21)

and the intrinsic distance between q and s tends to zero.

Suppose that q ∈ (tk−1, tk). If s ∈ [tk+1, tk+2], then the modulus degener-
ates, otherwise it does not. So we have the second degeneration condition:

D2. When the slit lengthens and splits the pentagon, modQx degenerates
if and only if the slit hits the segment which is opposite to the segment to
which q belongs.

In other words, in the limit, the slit splits the boundary into two arcs,
and the modulus degenerates if and only if the closures of these two arcs
contain at least two corners each.

For example, in Fig. 9, when the slit lengthens it eventually splits the
pentagon into two triangles. The tip ik of the slit hits the boundary at the
point i which splits the side (the half-circle) opposite to the side (0, ik) to
which the tip ik belongs.

Now we consider non-degenerate cases, that is the cases when there exists
a limit quadrilateral when the slit vanishes or when it splits the pentagon.

Case 1. The slit vanishes, q collides with exactly one corner, and the
angle of the special pentagon at this corner is positive. See Fig. 3a,b.

Case 2. The slit lengthens and hits the boundary at an interior point of
the side, splitting the special pentagon into a quadrilateral and a digon with
positive angle. See Fig. 4a,b.

It is also possible that as the slit lengthens, it hits the boundary at a
corner. If the modulus does not degenerate, this must be a corner neighboring
q, for example tk. Then the special pentagon splits into a non-degenerate
quadrilateral and the remaining part which can have only one corner at tk.
Therefore the detached part must be a disk. This we call

Case 3. The slit lengthens and hits the boundary at a corner. A disk
splits away from the special pentagon, leaving a non-degenerate quadrilateral.
See Fig. 5a,b.

The remaining cases happen when the slit vanishes as in Case 1, and the
corner with which the slit collides has zero angle, or when the slit lengthens,
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splits the special pentagon, and one part of the split pentagon is a digon with
zero angle. These cases will be considered in the next section.

7. Transformations connecting local families into a global family.

In this section we explain what happens when x passes a special point
x0, and q passes one of the tj, so that Qx0

is a non-degenerate quadrilateral.
We describe four types of transformations that may occur. The first three

correspond to cases 1-3 of the previous section, and the 4-th transformation
to the two remaining cases with a zero angle.

Transformation 1 (Fig. 3). Vanishing slit, Case 1.

Suppose that x passes a special point x0. Before this q ∈ (tk−1, tk), and
when x = x0, q(x0) = s, where s is one of the points tk−1, tk. After x passes
x0, q and s interchange. As the images of the sides lie on the same fixed
circles, we have the transformation shown in Fig. 3.

The slit whose image was an arc of a circle vanishes, and then a new slit
starts growing with the image on an arc of the circle that is adjacent to the
previous circle at the point where the image of old slit vanished.

The angle α of the limit quadrilateral at the corner where the slit vanishes
satisfies

α > 1. (22)

Transformation 2 (Fig. 4). The slit hits an interior point s of a segment (see
(21)). The slit is not tangent to this segment (Case 2).

If the modulus does not degenerate, s must be an interior point of the
segment adjacent to that segment which contains q. So there is exactly one
corner t in the interior of one boundary arc Z between q and s, and three
corners on the complementary arc. When q hits s, our pentagon splits into
two polygons: a quadrilateral with the corners s and tj 6= t, and a digon with
the corners s and and t. Notice that the angles at the two corners of a digon
are always equal. It is clear that the angle α of the limit quadrilateral at s
is less than 1: it is the inclination of the slit to the side that it hits. Thus

α < 1, (23)

while the digon has both angles 1− α, at s and at t.
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When the slit hits the boundary at an interior point of the side, a digon
is detached, and a vertical digon7 is attached on the side which was hit. One
side of the old slit becomes a side of the new pentagon.

Transformation 3 (Fig. 5). The slit hits a corner (see (21)) as described in
Case 3.

In this case s is a corner, and there is no other corner on Z. When q hits s,
the special pentagon splits into a quadrilateral with corners at tj, 1 ≤ j ≤ 4
and the other part which must be a disk. So if the limit quadrilateral has
angle α at s then the special pentagon before the limit has angle α+ 1 at s.

So far we ignored the non-generic cases which may occur when some
circles of the chain are tangent: when the slit vanishes at a corner with zero
angle, and when the slit hits from inside a side which is tangent to it. In
these cases one more transformation occurs.

Transformation 4 (Fig. 6). The slit vanishes at a corner with zero angle and
a digon with zero angle is attached.

The slit shortens and vanishes at the corner with zero angle (which is
shown at ∞ in Fig. 6a, and the resulting quadrilateral in Fig. 6b has angle
1. After that, we attach to this quadrilateral a digon with zero angle (shown
as a strip in Fig. 6c, and the slit shortens when x continues to change in the
same direction.

When we run x backwards, we first encounter Fig. 6c with the lengthening
slit which hits the boundary of the pentagon from inside under zero angle.
Similarly to transformation 2, a digon detaches (the strip in Fig. 6c is a digon
with zero angle), and a new slit starts growing as in Fig. 6a.

Notice that unlike in all other transformations 1-3, the direction of the
slit evolution (whether it lengthens or shortens) does not change for this
transformation. Two other distinctions of this transformation from transfor-
mations 1–3 are that the old and new slit are on the same circle, and that q
is on the same segment before and after the transformation.

This is consistent with the fact that the special points of the function
q(x) are simple, unless the angle of the special pentagon corresponding to a
special point is zero, in which case this special point is a simple critical point
for q(x) [22, Ch. 9, §46].

The process we described shows that every local family of special pen-

7A pair of digons with equal angles formed by two circles are called vertical.
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tagons can be extended to a global family of special pentagons, with the
special pentagons becoming quadrilaterals at isolated points. At these points
one angle α of the pentagon becomes angle β of the quadrilateral, and these
angles are related as follows: β = α + 1 for transformation 1, β = α − 1 for
transformation 3, and β = 1− α for transformation 2.

This continuation can be either performed indefinitely in one or both
directions, or the modulus can degenerate at one or both ends.

In sections 8–10 we will analyse global families.

Remark. Transformations 1–4 suggest the following:

When equation (4) undergoes an isomonodromic deformation and q col-
lides with some tj, then the resulting Heun equation has exponent difference
±(κj + 1) at tj as in Case 1, or ±(κj − 1) as in Cases 2,3.

This is true in general, without our restriction that the κj and x are real.
To obtain this result one can use asymptotics of p(x) and q(x) as x tends
to a special point written in [38, p. 534-535], and obtain the limit equation
with four singularities directly from (4).

8. Explicit description of global families

The previous section shows how local families are combined into a global
family. A global family Q(x), 1 < x < +∞ consists of local families of
special pentagons parametrized by intervals xj < x < xj+1. At the points
xj ∈ (1,∞) the special pentagon becomes a non-degenerate quadrilateral.
A global family may consist of a single local family; such families will be
discussed in section 10. The sequence xj can be finite, or infinite in one
direction, or in both directions. The smallest and the largest terms of this
sequence, when they exist, are 1 and ∞. All other terms correspond to
the special points of the solution of PVI which is described by our global
family. To describe global families more precisely, we recall the construction
of combinatorial objects related to circular polygons.

9. Representation of polygons by nets.

Circular polygons are conveniently represented by nets [10, 15, 16]. Con-
sider a polygon given by (15). Its net is the cell decomposition of D by all
f -preimages of the circles Ck, where Ck is the circle that contains f([tk−1, tk]).
The corners are required to be vertices of the net. The 1-cells of the net are
labeled by their images. Two nets are considered equal if there is an orien-
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tation preserving homeomorphism which maps one onto another preserving
the labels of the corners. Let e1 be the 1-cell on the boundary of the net,
oriented according to the orientation of the boundary, and beginning at t1.
Two polygons with developing maps f1, f2 are equal if their circles Cj are the
same, their nets are equal, and the images e1, as oriented 1-cells, are equal.

In the illustrations we label the circles Cj and corresponding 1-cells of
the nets with colors (or with different styles of lines in the black and white
version).

It is difficult to characterize all possible nets of circular quadrilaterals or
special pentagons. The topological classification of generic 4-circle chains is
given in Appendix II. For each type of chain, one has a set of nets compatible
with this chain. For the chain topologically equivalent to a quadruple of
generic great circles as in Fig. 11, one can give the following characterization
of the nets. Notice that the cell decomposition of the sphere in Fig. 11 has
the following property which must be inherited by the net:

a) When two 2-cells share a boundary 1-cell, one of these two cells is a
quadrilateral and another is a triangle.

Moreover, the net has an evident additional property:

b) All interior vertices have degree 4, and all vertices on the sides have
degree 3.

Our standing assumption (11) implies that

c) The degrees of the corners (as vertices of the net) are even.

These three properties completely characterize the nets of circular quadri-
laterals over the 4-circle chain shown in Fig. 11. See also Fig. 26A, where the
same 4-circle chain is shown. Thus for example, all cell decompositions in
the right column of Fig. 23 are nets of quadrilaterals with this 4-circle chain.

10. Real solutions of PVI without special points

Our paper [13] describes all complex solutions of PVI without special
points in the complex plane.

In this section we will describe all real solutions of PVI with real param-
eters, which have no real special points.

For simplicity we limit ourselves to the generic case: all parameters κj are
not integers, and the circles of the chain are not tangent to each other. The
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last condition holds for example when the projective monodromy contains
no parabolic transformations.

Solutions without special points correspond to local families for which the
modulus degenerates on both ends. So degeneracy conditions D1 and D2 of
section 6 must be satisfied (one condition on one end and another on another
end).

Thus we have one of the three configurations shown in Fig. 7.
In a family without special points we must have

q(x) ∈ (tj, tj+1) for all x ∈ (1,∞)

and some j ∈ Z4. Suppose without loss of generality that j = 1, so that

q(x) ∈ (0, 1), x > 1. (24)

The condition that f(0) = f(1) when the slit vanishes can be stated in terms
of projective monodromy representation:

Transformations T1 and T2 have a common fixed point

with multipliers e2πiκ1 and e2πiκ2 .
(25)

We will use the results of Klein [31] and Van Vleck [43] on circular trian-
gles. First of all we have

Lemma 3. For any positive numbers λj, 1 ≤ j ≤ 3, there exists a unique
equivalence class of circular triangles with angles (λ1, λ2, λ3).
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Sketch of the proof. The developing map of a triangle with angles λj
satisfies the Schwarz differential equation:

f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

=
1− λ21
2z2

+
1− λ22

2(z − 1)2
+
λ21 + λ22 − λ23 − 1

2z(z − 1)
,

see, for example, [26, p. 452] or [20, Ch. VI, §3]. Parameters λj can be
arbitrary non-negative numbers, and for fixed parameters all solutions give
equivalent triangles. This proves the lemma.

Lemma 4. In a triangle with angles (λ1, λ2, λ3), the image of the closure of
the side opposite to λ1 under the developing map makes

E

(

λ1 − λ2 − λ2 + 1

2

)

full turns8 around the circle containing this image. Here E(x) is the integer
part of x for x > 0 and zero otherwise.

This is called the Ergänzungsrelation of Klein [31], [43].
First we address the easier cases b) and c) in Fig. 7. Consider the case

b). In this case, our triangle ABC is split into two parts, one of which is
a digon with both angles κ1, and the other part is a triangle with angles
(κ2, κ3, κ4 − κ1). The image of a side of a digon cannot cover a full circle.
Therefore the image of the side NA of the triangle cannot cover the full
circle. The necessary and sufficient condition for this according to Lemma 4
is

κ3 + κ1 ≤ κ2 + κ4 + 1. (26)

Similarly, Fig. 7c produces the condition

κ4 + κ2 ≤ κ1 + κ3 + 1. (27)

As there are no free parameters in the configurations in Fig. 7b,c, we conclude
that when (26) is satisfied, there is a single equivalence class of configurations
of the form Fig. 7b and when (27) is satisfied, there is a single equivalence
class of configurations of the form Fig. 7c with these angles. This means that
each PVI with such parameters has an isolated solution of type b) or c), or

8When f : [a, b] → C is an immersion of a closed interval [a, b] into a circle C then the
“number of full turns” is defined as card f−1(a)− 1.
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both. Notice that the two inequalities (26) and (27) cover the whole range
of real parameters, so we conclude that isolated solutions of PVI of one or
both types Fig. 7b,c always exist. There can be one or two of them.

Now we turn to the case a). We introduce the auxiliary angle t ∈ [0, 1]
as a parameter (see Fig. 7a).

When t is fixed, there exist two equivalence classes of triangles with pre-
scribed angles: NAB with angles (t, κ2, κ3) and ANC with angles (κ1, 1 −
t, κ4). Let f1 and f2 be their developing maps.

The question is when we can glue such two triangles along the side NA.
As we assume that the circles of the chain are not tangent to each other, t ∈
(0, 1), and we can post-compose the fj with linear-fractional transformations
to achieve fj(N) = 0, f1(BN) and f2(NC) belong to a line ℓ through the
origin, and fj(NA) is contained in the real line for j = 1, 2. Then it is clear
that the necessary and sufficient condition for the possibility of gluing is that
the image of the closed side NA under both developing maps intersects the
line ℓ the same number of times. Indeed, if this is so, the images of the point
A under both developing maps are on the same side of the line ℓ (or both at
0, or both at ∞), and these images can be made equal by additional scaling
z 7→ rz with some r > 0.

As ℓ intersects the real line at 0 and ∞ we are interested in the combined
numbers of zeros and poles of fj on NA.

Consider triangle NAB and denote by (λ1, λ2, λ3) the angles at (N,A,B).
To count the number of zeros and poles of f1 on NA times the image of AN
intersects the circle that contains NB we use the results of Klein [31] (see
also [43]) on the number of zeros of hypergeometric function on an interval
[0, 1].

We recall that the hypergeometric function w(z) = F (α, β, γ, z) is the
solution of the hypergeometric equation

z(z − 1)
d2w

dz2
− (γ − (α + β + 1)z)

dw

dz
+ αβw = 0, (28)

which satisfies F (0) = 1 and is holomorphic at 0. A second linearly indepen-
dent solution of the same equation is

F1(z) = z1−γF (α− γ + 1, β − γ + 1, 2− γ, z).

Thus F/F1 is a developing map of a triangle whose angles are the absolute
values of the exponent differences of (28),

λ1 = |1− γ|, λ2 = |γ − α− β|, λ3 = |α− β|.
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We choose
λ1 = 1− γ, λ2 = α + β − γ, λ3 = α− β,

which defines α, β, γ uniquely. Notice that F1(0) = 0 because γ ∈ (0, 1).
Then f1 = F/F1 is the developing map of NAB, and the side NA = (0, 1).

The number of crossings between f1(AN) and ℓ is equal to the combined
number of zeros and poles of F and F1 on [0, 1]. We only consider the case
λ1 ∈ (0, 1) which we need.

According to [43] the number of zeros of F on [0, 1] is:

(i) zero, if [λ2] > [λ3],

(ii) E ((λ1 + λ3 − λ2 + 1)/2), if [λ3] > [λ2],

(iii) 0 or 1 depending on whether E ((λ1 + λ3 − λ2 + 1)/2) is even or odd, if
[λ2] = [λ3].

The number of zeros of F1 is always

E

(

λ3 − λ1 − λ2 + 1

2

)

+ 1.

Adding these together we obtain that the number of crossings between
the image of AN and the circle of BN equals to:

1, if [λ2] ≥ [λ3],

and to

E

(

λ1 + λ3 − λ2 + 1

2

)

+ E

(

λ3 − λ1 − λ2 + 1

2

)

+ 1, if [λ2] < [λ3].

Applying this result to NAB and the similar result to CAN , (or rather
to its mirror image), we obtain that the gluing is possible if and only if one
of the following two conditions holds:

1) κ2 ≥ κ3 and κ1 ≥ κ4,

2) κ2 < κ3 or κ1 < κ4, and

E

(

κ3 − κ2 + t+ 1

2

)

= E

(

κ4 − κ1 − t+ 2

2

)

, (29)

27



and

E

(

κ3 − κ2 − t+ 1

2

)

= E

(

κ4 − κ1 + t

2

)

, (30)

To simplify these conditions, we put

t = u+ 1/2, −1/2 ≤ u ≤ 1/2,

a = κ3 − κ2 + 1/2, b = κ4 − κ1 + 1/2. (31)

Then conditions 1)-2) become

1′) a ≤ 1/2, b ≤ 1/2, or

2′) E((a+ 1+ u)/2) = E((b+ 1− u)/2), and E((a− u)/2) = E((b+ u)/2).

Eliminating u ∈ (−1/2, 1/2) we obtain:

|a− b| < 1, or min{a, b} < 3/2, (32)

the shaded region in Fig. 8. For these values of parameters, PVI has an
interval of solutions without special points, in addition to one or two isolated
solutions of types b), c). The boundaries of the regions corresponding to (26)
and (27) are shown as lines a = b+ 1 and b = a+ 1 in Fig. 8.

Theorem 1. A real solution q(x) of PVI with real parameters κj defined
on (1,∞) and satisfying q(x) ∈ (0, 1), x > 1 always exists. The monodromy
corresponding to this solution satisfies (25). Solutions of type Fig. 7a exist
if (32) with a and b as in (31) holds, and these solutions form an interval.
Solutions of type Fig. 7b,c exist if (26) or (27) hold, and these solutions are
isolated.

The cases q(x) ∈ (tj, tj+1) for j = 2, 3, 4 are obtained by a cyclic permu-
tation of the angles in our conditions.

In [7], the following theorem is proved: Solutions of PVI with parameters
(1/2, 1/2, 1/2, 1/2) corresponding to unitary monodromy do not have special
points on a real interval between the fixed singularities.

These authors do not assume a priori that their solutions are real. For
the case of real solutions, this result can be obtained as follows.

Consider some special pentagon corresponding to a real solution of this
equation. The angles are (1/2, 1/2, 1/2, 1/2, 2), and the circles Cj are great
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circles. Removing the slit we would obtain a geodesic quadrilateral with
angles (1/2, 1/2, 1/2, 3/2), or a triangle with angles (1/2, 1/2, 1), but it is
easy to see that such quadrilateral does not exist (see for example, [11]). So
it must be a geodesic triangle with angles (1/2, 1/2, 1). Then the special
pentagon must have the shape as in Fig. 7a, so our global family does not
have special points.

In [6], the following fact is proved: Solutions of PVI with parameters
(1/2, 1/2, 1/2, 3/2) corresponding to unitary monodromy do not have poles
on R\{0, 1}. Again, in the case of real solutions, this follows from our
results. When the special pentagon corresponding to such a solution under-
goes a transformation with q = ∞ the limit quadrilateral must have angles
(1/2, 1/2, 1/2, 1/2) or (1/2, 1/2, 1/2, 5/2). Geodesic quadrilaterals with such
angles do not exist [11].

We illustrate Theorem 1 with simple examples. Consider the special
pentagon shown in Fig. 9. Here

κ1 = κ2 = κ3 = κ4 = 1/2, (33)

and the slit is the segment [0, ik]. The developing map f maps the upper
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Figure 9: A special pentagon.

half-plane conformally onto this pentagon with the boundary correspondence

(0, 1, q, x,∞) 7→ (−1, 0, ik, 0, 1). (34)

The inverse f−1 of the developing map sis easy to write explicitly:

f−1(z) =
(1 + J(k))(w + J(k))

(1− J(k))(w − J(k))
, w = −J

(

√

z2 + k2

1 + k2z2

)

,

where
J(z) = (z + 1/z)/2

is the Joukowski function. This explicit formula gives

q =
J(k) + 1

J(k)− 1
, x =

(

J(k) + 1

J(k)− 1

)2

.

Thus q(x) =
√
x. This is a solution of PVI with parameters (33) which has

no special points in the complex plane (all such solutions are listed in [13]).
The projective monodromy representation corresponding to this solution is

T0(z) = T4(z) = 1/z, T1(z) = T3(z) = −z.

Changing the boundary correspondence (34) to

(0, 1, x, q,∞) 7→ (1,−1, 0, ik, 0),
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we obtain another algebraic solution

q(x) = x+
√
x2 − x

without special points in the whole complex plane [13]. This solution was
also obtained in [3, Section 2].

11. Another algebraic solution

In this section we give another example where everything can be explicitly
computed. Consider the region Q in Fig. 10a. Let f be the conformal map
of the upper half-plane onto Q with the boundary correspondence

(0, 1, x,∞) 7→ (−1, eiπα,−eiπα, 1).

These conditions define x > 1 uniquely. Let q = f−1(k). Then q < 0. As the
slit lengthens, the tip k eventually hits 0, the modulus degenerates and we
have x → +∞. As the slit shortens and vanishes, we have transformation 1
occurring for some x0 ∈ (1,+∞). We have q(x0) = ∞. After the transfor-
mation we obtain Fig. 10c. When the slit lengthens in Fig. 10c, it eventually
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hits the boundary at the point eiα, the modulus degenerates, and x → 1.
Thus in this example we have exactly one special point of (1,+∞) and this
special point is a pole. The monodromy generators of (4) are determined
from (20), and we obtain

T1(z) = T4(z) = 1/z, T2(z) = e−2πiα/z, T3(z) = e2πiα/z.

When α is rational, the developing map is an algebraic function, see [12,
Section 6].

We set α = 1/2. To find f explicitly we denote

q = f−1(k), c = f−1(1 + i0), a = f−1(0), b = f−1(∞).

Consider the auxiliary function

g(z) = −1

4

(

z − 1

z

)2

.

It is of degree 4, real on the real and imaginary lines and on the unit circle,
and has 6 critical points with critical values

g(0) = g(∞) = ∞, g(±1) = 0, g(±i) = 1.

Thus the composition h = g◦f maps the real line into itself and has no critical
points in the upper half-plane. This function h extends to the Riemann
sphere by symmetry and becomes a rational function. It is easy to see that
the real rational function w = 1− h has:

(i) double poles at a and b,

(ii) a simple zero at x and a triple zero at 1,

(iii) w(1) = w(∞) = 1,

(iv) simple critical points at q and c, and w(c) = 0.

From (i), (ii) and (iii) we conclude that

w(z) =
(z − 1)3(z − x)

(z − a)2(z − b)2
, and x = a2b2.

Another equation comes from condition (iv) which implies that 0 is a critical
value. Solving these two equations with respect to a and b with Maple, we
obtain an algebraic solution of PVI with parameters

(κ1, κ2, κ3, κ4) = (1/2, 3/2, 1/2, 1/2)
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q(x) =

√
x− 3x√
x− 3

,

which has a single special point on (1,+∞), namely a pole at x = 9.

12. Some other cases where q(x) can be written explicitly

We mention several special cases without going into detail.
1. Suppose that the projective monodromy representation is reducible.

This means that all linear-fractional transformations Tj have a common fixed
point. Without loss of generality, we place it at infinity. Then all monodromy
transformations are affine, and the circles Cj of the chain are straight lines.
Our pentagons are rectilinear and the developing maps can be expressed by
the Schwarz–Christoffel formula. Then q(x) can be expressed in terms of
hypergeometric integrals.

Indeed, the Schwarz–Christoffel formula of a rectilinear special pentagon
gives

f(z) = c

∫ z

0

ζα1−1(ζ − 1)α2−1(ζ − x)α3−1(ζ − q)dz = c(I1(z)− qI2(z)),

where

I1(z) =

∫ z

0

ζα1(ζ − 1)α2−1(ζ − x)α3−1dζ

and

I2(z) =

∫ z

0

ζα1−1(ζ − 1)α2−1(ζ − x)α3−1dζ.

Normalization f(1) = a and f(∞) = b will define our special pentagon
completely, so we obtain with k = b/a

q(x) =
kI1(1)− I1(∞)

kI2(1)− I2(∞)
,

an expression for q(x) in the form of hypergeometric integrals.

2. Suppose that one of the monodromy transformations is the identity,
and the corresponding angle is 1. Then our special pentagon is in fact a slit
triangle (or a slit digon, or a slit disk). In this case, the developing map itself
can be expressed in terms of hypergeometric functions, see [42], where the
case of slit-triangle quadrilaterals has been studied in great detail.

These are the two known cases of reduction of PVI when some solutions
can be explicitly found. In a certain sense there are no other cases [45],
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Figure 11: Four-circle chains for a) Example 1, b) Example 2, c) Example 7.

algebraic solutions and some cases [35] when a solution can be expressed as
a somewhat non-standard combination of classical special functions.

13. Examples

We begin with the simplest examples when all special pentagons in a
global family are regions in the sphere, so the nets are not required for their
description.

Example 1. Consider the conformal map f from the upper half-plane onto
the shaded region in Fig. 12a. This is the developing map of a special pen-
tagon. The corners on ∂H are shown below, and their images are shown in
parentheses.

Suppose that the slit lengthens. Then the extremal distance between the
segment [(0), (1)] and the opposite segment [(x), (∞)] (which contains (q))
decreases, so the extremal distance in H between [0, 1] and [x,∞] decreases,
thus x decreases.

When (q) tends to [(0), (1)], modulus degenerates and x→ 1.
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Figure 12: Global family in Example 1.

When the slit shortens, x increases, and eventually the slit vanishes and
we obtain Fig. 12b. At this moment q = ∞. We have transformation 1, so
after that a new slit starts as shown in Fig. 12c and when it hits [(1), (x)], the
extremal distance between [0, 1] and [x,∞] tends to infinity which implies
that x→ +∞.

We conclude that solution q(x) of PVI which corresponds to this global
family has one pole on (1,∞), and has no zeros, no fixed points and no
1-points.

The chain of circles corresponding to this example is shown in Fig. 11a.
For example, this can be any four generic great circles, which corresponds to
SU(2) monodromy, determined by formula (20), see Appendix III.

Example 2. In this example, Fig. 13, the image of the developing map is
also a region in the sphere. In Fig. 13a, when the slit increases, the extremal
distance between [0, 1] and [x,∞] decreases which means that x decreases.
When the slit hits the segment [(0), (1)], this distance tends to zero, which
means that x→ 1.

As the slit in Fig. 13a decreases, x increases, and when the slit vanishes
we obtain Fig. 13b. At this moment q(x) = x, and we have transformation 1.
As x increases further we have Fig. 13c, and then, when (q) hits [(0), (1)], we
obtain Fig. 13d. This is transformation 2, and q(x) = 1 at this point. The
digon on the right of Fig. 13c was detached. According to the transformation
2, we attach to the quadrilateral in Fig. 13d the vertical digon shown on the
left of Fig. 13e. The slit in Fig. 13e shortens as x increases. When it vanishes
we obtain Fig. 13f where q(x) = 0, and we have transformation 2. After the
transformation we obtain Fig. 13g, where the slit lengthens as x increases.
Eventually the slit hits [(1), (x)] which corresponds to x→ +∞.
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Figure 14: Circles chain for Example 3.
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Figure 16: Four-circle chain for Example 4.
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Figure 19: Three-circle chain for Example 5.
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Therefore, the solution q(x) in this example has three special points x1 <
x2 < x3 on (1,+∞), such that q(x1) = x1, q(x2) = 1, q(x3) = 0. These
three special points correspond to quadrilaterals in Fig. 13b,d,f. Monodromy
is determined by the four circles in Fig. 11b by formula (20).

Example 3. Consider the 4-circle chain shown in Fig. 14, where all pairs
Cj, Cj+1 are tangent. A quadrilateral, which is a subset of the sphere, is
the shaded region in Fig. 15b. To obtain a special pentagon we make a slit
[(0), (q)] shown in Fig. 15a. When this slit lengthens, it eventually hits the
segment [(x), (∞)] and modulus degenerates, x → 1. As the slit shortens
and vanishes in Fig. 15b, we have transformation 4. After that, a digon with
zero angle is attached to the shaded region in Fig. 15b along a small arc
[(0), (q)] in Fig. 15c, and the new slit [(q), (1)] continues to shorten. The
special pentagon in this figure is not a subset of the sphere anymore: the
dark shaded area is covered twice. When (q) hits (1), the slit in Fig. 15c
vanishes, and a new transformation 4 occurs at a quadrilateral shown in
Fig. 15d. Afterwards, a sequence of transformations 4 continues indefinitely,
alternately at (0) and (1) with the segments [1, x] and [∞, 0] of the pentagon
increasing by a full circle length after each two transformations, thus q(x)
oscillates between 0 and 1 as x → +∞. The sequence of special points is
(0,1,(0,1),. . . ).

Example 4. Each special pentagon in this family is mapped by the devel-
oping map to a four-circle chain shown in Fig. 16. It is easy to check that
Fig. 17b is a net corresponding to this chain. We make a cut as shown in
Fig. 17a, and start a global family from this local family.

The nets for the global family are shown in Figs. 17 and 18, with the
left columns (a,c,e,g,i,k) containing the local families of special pentagons,
and the right columns (b,d,f,h,j,l) containing quadrilaterals connecting the
local families. Modulus degenerates on one end (x → +∞). As x → 1, we
have an infinite chain of local families so as x increases we have the following
sequence of special points:

(. . . , (∞,∞, 0, 0),∞, x)

and no 1-points. The sequence has period of length 4, (∞,∞, 0, 0) repeated
infinitely many times on the left. The monodromy in this example is

M0 =

(

0 1
−1 0

)

, M1 =

(

0 i
i 0

)

, Mt =

(

0 Ri
Ri 0

)

,
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Figure 21: Four-circle chain for Example 6.

where we assume that the inner and outer circles have radii 1 and R.

Example 5. Parameters are the same as in the previous example but mon-
odromy is different. The global family is shown in Fig. 20, with the left
column (a,c,e,g,i,. . . ) containing the local families of special pentagons, and
the right column (b,d,f,h,j,. . . ) containing quadrilaterals connecting the local
families. The corresponding three-circle chain is shown in Fig. 19b. There is
an infinite sequence of local families; as x increases from 1 to ∞ we have the
following sequence of special points:

(0, (1, 1, 0, 0), . . .).

The sequence has period (1, 1, 0, 0) repeated infinitely many times on the
right.

Example 6. The circle chain (see Fig. 21) consists of two pairs of non-
intersecting circles. The global family is a doubly infinite sequence. A part
of this global family is shown in Fig. 22. It starts with a local family repre-
sented by a pentagon in Fig. 22a. As q tends to a, this pentagon degenerates
to the quadrilateral shown in Fig. 22b. In the opposite direction, when q
tends to x, the pentagon in Fig. 22a does not degenerate, and the sequence
continues indefinitely, with the length of the sides [1, x] and [∞, 0] ever in-
creasing. At the other end of the sequence shown in Fig. 22, a quadrilateral in
Fig. 22j is symmetric with respect to reflection preserving the vertices 1 and
a′′ and exchanging 0 with x. The sequence then continues by a local family
reflection symmetric to the pentagon shown in Fig. 22i (with the direction of
q reversed), and continues indefinitely, with the length of the sides [0, 1] and
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[x,∞] ever increasing. We have a doubly infinite sequence of special points

(. . . (∞,∞, x, x),∞, (0, 0,∞,∞), . . .).

The sequence is infinite in both directions, has period (∞,∞, x, x) on the
left and (0, 0,∞∞) on the right.

Example 7. Consider the 4-circle chain in Fig. 11c. To construct a global
family, we begin with a quadrilateral represented by a net in the right column
of Fig. 23. That all nets in this column represent some quadrilaterals follows
from the criterion given in section 9.

Let us begin with the quadrilateral in Fig. 23b. To transform it to a
special pentagon, we make a slit as in Fig. 23a. Lengthening of this slit
corresponds to decreasing x. In particular, when the slit hits the point a
in Fig. 23a, x → 1. Now we follow pictures Fig. 23 alphabetically, in the
direction of increasing x. So in Fig. 23a the slit shortens. As it vanishes we
obtain Fig. 23b, transformation 1 happens, and we pass to Fig. 23c.

In Fig. 23c, the slit lengthens till q hits b. A transformation 2 happens,
detaching a digon with corners x and b in Fig. 23c to obtain the quadrilateral
Fig. 23d. A point c in Fig. 23d maps to the same point as x. A digon with the
corners b and c is attached to the interval [b, c] of the quadrilateral, resulting
in a pentagon Fig. 23e. The slit shortens towards x in Fig. 23e. When it
hits x, the points x and c collide, and we get a quadrilateral in Fig. 23f. A
transformation 1 happens at Fig. 23f, and the slit lengthens towards 1 in
Fig. 23g. As it hits 1, a disk with the red (dotted line) boundary is detached,
resulting in the quadrilateral Fig. 23h. The point e in Fig. 23h maps to
the same point as 1. A transformation 3 happens in Fig. 23h, with a disk
with black (solid line) boundary attached in Fig. 23i. As the slit in Fig. 23i
shortens and q hits 1, the points 1 and e collide, and we get the quadrilateral
Fig. 23j.

Transformations occurring in the right column of Fig. 23 are: 1,2,1,3,1.
The last quadrilateral shown is Fig. 23j. It is symmetric with respect to the
reflection which exchanges 0 and x while leaving 1 and ∞ fixed. It is easy to
see that in the further continuation of the process we will obtain all pictures
Fig. 23 in the reverse order i)-a) subject to a reflection exchanging 0 and x.

So Fig. 23 represents only one half of the global family. The global family
is symmetric, with the symmetry exchanging (0) and (x). The full sequence
of special points is

(1, x, x, 1, 1, 1, 0, 0, 1).
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Appendix I. Monodromy representations corresponding to quadri-
laterals

A monodromy representation consists of 4 matrices in SL(2,C) which
satisfy the relation (10). For real equations (4) these four matrices can be
represented as products of reflections in the circles Cj containing the images
of the sides of a special pentagon. Here we will discuss which monodromy
representations correspond to real equations, and how to find the reflections
σj from matrices Tj.

This problem was addressed in [8], and we begin by restating the result
obtained there. First of all, we change the reference point of the fundamental
group in Fig. 1 to the point−1 as in Fig. 24, and deform the loops accordingly.
Now consider a symmetric set of generators of the fundamental group shown
in Fig. 25. Let N1, N2, N3 be the monodromy matrices corresponding to γ1,
γ12, γ123. We have

N1 = T1, N2 = T1T2, N3 = T1T2T3.
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When none of the κj is an integer, monodromy representation determines
equation (4) uniquely for given real x and κj [8, 4.2, 4.3]. This implies that
monodromy representations correspond to real solutions of (4) normalized as
in (9) with x0 = −1 if and only if

Nj = N−1

j , 1 ≤ j ≤ 3, (35)

which is equivalent to the condition obtained in [8].
We will derive a different condition, without the assumption on the κj.
Consider an arbitrary quadruple of SL(2,C) matrices satisfying

T1T2T3T4 = id. (36)

SL(2,C) acts on these quadruples by simultaneous conjugation. To para-
metrize conjugacy classes of monodromy representations we denote

tj = TrTj, tjk = Tr (TjTk) = Tr (TkTj).

Conjugacy classes are parametrized by 7 complex numbers

t1, t2, t3, t4, t12, t23, t13 (37)

which are subject to one relation

t12t23t13 + t212 + t223 + t213
−t12(t1t2 + t3t4)− t23(t2t3 + t1t4)− t13(t1t3 + t2t4) (38)

+t21 + t22 + t23 + t24 + t1t2t3t4 = 4.

This relation was found by Fricke and Klein [17], and was studied in [25],
[4] and elsewhere. Parametrization of monodromy representations by these
data is discussed in detail in [29]. In particular it is proved there that there
are open dense sets on the hypersurface (38) and on the space of conjugacy
classes of monodromy representations which are homeomorphic.

We say that a representation is generated by reflections if there exist four
circles C1, C2, C3, C4 such that the reflections σj in these circles satisfy

Tj = σjσj+1, j ∈ Z4. (39)

Notice that (39) implies (35).
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Arbitrary reflection can be written as

σ(z) =
az + b

cz − a
, (40)

which we represent by the matrix

(

a b
c −a

)

, |a|2 + bc = 1, (41)

where b, c are real. Product of reflections represented by matrices A,B is a
linear-fractional transformation with matrix AB. Matrices A associated with
reflections are characterized by the properties that detA = −1 and A = A−1.

Let Σj be the matrices representing the reflections σj . Then Σ1 = I
because of our normalization, and we have T1 = Σ2, T2 = Σ2Σ3, T3 = Σ3Σ4.
So N1 = T1 has matrix Σ2, N2 = T1T2 has matrix Σ2Σ2Σ3 = Σ3, and
N3 = T1T2T3 has matrix Σ3Σ3Σ4 = Σ4. Thus (35) is satisfied.

Our first question is which representations are generated by reflections.
First we notice that composition of two reflections always has real trace:

it is elliptic if the circles cross, parabolic if they are tangent and hyperbolic
if they are disjoint. Second, if (39) holds then TjTj+1 = σjσj+2 also has real
trace for each j ∈ Z4. Thus if (39) holds, the first six parameters in (37)
must be real. In addition to this we have the following inequality:

Theorem A1. A monodromy representation (36) is generated by reflections
if and only if t1, t2, t3, t4, t12, t23 are real and

∆ := t21t
2

3 + t22t
2

4 + t212t
2

23 − 4(t21 + t22 + t23 + t24 + t212 + t223)

+ 4(t1t2t12 + t2t3t23 + t1t4t23 + t3t4t12) (42)

− 2(t1t2t3t4 + t2t4t12t23 + t1t3t12t23) + 16 ≤ 0.

Monodromy transformations Tj determine the reflections σj uniquely unless
all Tj commute, and the projective monodromy group is isomorphic to a sub-
group of the multiplicative group of the unit circle or of the additive group of
the real line.

Proof of Theorem A1.
Uniqueness. Suppose that we have (39) and

Tj = σ′
jσ

′
j+1, j ∈ Z4. (43)
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First we notice that if σj = σ′
j for some j, then σk = σ′

k for all k. Indeed
σj = σ′

j together with (39) and (43) implies σj+1 = σ′
j+1 and so on.

Therefore, it is sufficient to prove that σ2 = σ′
2. We have

T1 = σ1σ2, T2 = σ2σ3. (44)

Lemma A1. If T1 and T2 are non-identical linear-fractional transformations
which together have at least three fixed points, and (44) holds, then σ2 is the
reflection in the unique circle which passes through all fixed points of T1 and
T2.

Proof. If T1 6= id then the circles C1 and C2 of σ1 and σ2 are distinct and
their points of intersection are exactly the fixed points of T1. So C2 contains
the fixed points of T1, and T2. This proves the lemma.

How can T1 and T2 have at most 2 fixed points together?
a) One is elliptic and another one is parabolic, sharing one fixed point.
b) Both are parabolic.
c) Both are elliptic sharing two fixed points, in which case they commute.
Consider the case a). Suppose that the shared fixed point is ∞, T1(z) =

e2πiαz and T2(z) = z + c. Then C1 and C2 must be lines through the origin,
and C2, C3 must be parallel lines perpendicular to c. Therefore C2 is the line
through the origin perpendicular to c, that is this circle is uniquely defined
by T1 and T2.

Now we address b). If in case b) T1 and T2 do not share their fixed points,
we may assume that T1(z) = z + c while T2 has fixed point d ∈ C. Then C2

is the unique line through d perpendicular to c.
If the parabolic transformations in b) share the fixed point, then they are

simultaneously conjugate to z + a and z + b, and C2 is a line perpendicular
to both a and b, so a and b are collinear.

So either the circle C2 is uniquely defined by T1, T2, or T1 and T2 commute,
and either both are elliptic or both are parabolic. If they are both parabolic,
their families of invariant circles must be the same.

This argument applies to every pair Tk, Tk+1. Therefore, the only cases
when the σj are not defined by the Tj are the cases stated in the theorem.
This completes the proof of uniqueness.

Existence. We have already noticed that reality of t1 . . . , t4, t12, t23 is
necessary for (39). It remains to prove that when these traces are real,
inequality (42) is necessary and sufficient.
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We write a reflection as in (40), (41) In particular, we obtain the reflection
in the real axis when a = i, b = c = 0, and in the line eiα when a = ieiα, b =
c = 0.

The trace of a product is

tr (σ1σ2) = 2Re (a1a2) + b1c2 + c1b2. (45)

We normalize by SU(2) conjugation so that two adjacent circles are the
real line and the line {reiα : r ∈ R}, and write the four matrices of reflections
that we want to find as

(

a1 b1
c1 −a1

)

,

(

ieiα 0
0 ie−iα

)

,

(

i 0
0 i

)

,

(

a2 b2
c2 −a2

)

,

in this order. We can further normalize, and assume that 1 is a fixed point
of the product of the third and fourth reflections:

ia2z + ib2
ic2z − ia2

= z, where z = 1, (46)

which gives
c2 − b2 = 2Re a2. (47)

Now we write that the traces of products are given (real) numbers:

2Re (−ie−iαa1) = t1, (48)

2 cosα = t2, (49)

2Re (ia2) = t3, (50)

2Re (a2a1) + b2c1 + c2b1 = t4, (51)

2Re (−ia1) = t12, (52)

2Re (ieiαa2) = t23. (53)

Equations (47)–(53) are easy to solve. First, a1 is determined from (48), (52)
and a2 from (50), (53). Then products bjcj are found from

b1c1 = 1− |a1|2, b2c2 = 1− |a2|2, (54)

which express the fact that determinants of our matrices are −1, and to-
gether with (47) and (51) permits to find bj, cj. This amounts to solving two
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quadratic equations. One of them always has real solutions. Inequality (42)
comes from the condition that the second also has real solutions, namely that
all bj, cj are real.

We give the details of the computation. From (48), (52),

−ia1 =
1

2

(

t12 − i
t12 cosα− t1

sinα

)

. (55)

Similarly, from (50), (53),

ia2 =
1

2

(

t3 + i
t3 cosα− t23

sinα

)

. (56)

Then

1− |a1|2 =
1

t22 − 4

(

t21 + t22 + t212 − t1t2t12 − 4
)

, (57)

and

1− |a2|2 =
1

t22 − 4

(

t22 + t23 + t223 − t2t3t23 − 4
)

. (58)

Using (55) and (56) we obtain

2Re (a2a1) =
1

4− t22
(2t1t23 + 2t3t12 − t1t2t3 − t2t12t23) , (59)

and using (47)

c2 − b2 =
t3 cosα− t23

sinα
. (60)

Next, from (54), (57), (58), we obtain

b1c1 =
1

t22 − 4

(

t21 + t22 + t212 − t1t2t12 − 4
)

, (61)

and

b2c2 =
1

t22 − 4

(

t22 + t23 + t223 − t2t3t23 − 4
)

. (62)

Solving first the system (60), (62) with respect to b2, c2, we obtain a quadratic
equation with discriminant

t22t
2

3 − 4t22 − 4t23 + 16 = (t22 − 4)(t23 − 4) ≥ 0,

because tj ∈ [−2, 2]. So we always have real solution c2, b2.
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Next we solve the system (51) with (59) and (61) with respect to b1, c1,
using the known product b2c2 from (62). This also leads to a quadratic equa-
tion, whose discriminant is a polynomial in t12, t23 and tj. This polynomial
factors (using Maple) with one factor t22 − 4 < 0 and the other factor is ∆ in
(42).

This completes the proof.

Remark on the proof. In the process of recovery of σj we had to solve two
quadratic equations, so in general we had 4 choices to make. On the other
hand, our normalization condition (46) leaves two choices because two circles
intersect at two points. Next, we never used t13 in our recovery procedure
for σj . As t13 satisfies the quadratic equation (38), assigning t13 narrows our
choices to two.

An interesting question is what happens when the monodromy group is
conjugate to a subgroup of SU(2). Every element of SU(2) is the product
of two reflections in great circles. If an element of SU(2) is represented as
a product of two reflections, then these reflections must be in great circles,
because these circles contain the fixed points of the element which are di-
ametrally opposite.

An interesting special case is when all seven parameters in (37) are real.
According to [36, Prop. III.1.1] this happens if and only if he projective
monodromy group is a subgroup of SU(2) or SL(2,R). When the group is
generated by reflections, the first six parameters in (37) are real, so all seven
will be real if and only if the discriminant of (38), as a quadratic equation
with respect to t13, is non-negative. Straightforward computation shows that
this discriminant is nothing but ∆ defined in (42). Thus we obtain

Theorem A2. Let T1, T2, T3, T4 be unitary matrices satisfying (36), and
all seven parameters in (37) are real. This representation is generated by
reflections if and only if ∆ = 0, which is equivalent to

2t13 + t12t23 − t1t3 − t2t4 = 0. (63)

Equation (63) is what (38) becomes when ∆ = 0.
Remarks. Wemention a simple geometric interpretation of our conditions.
Condition that t12, t23 are real: the trace of a product of two elliptic

transformations is real if and only if their four fixed points lie on a circle.
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Condition ∆ = 0 gives a relation between six angles associated to a
spherical or hyperbolic quadrilateral: four angles of the quadrilateral, and
two angles between the circles containing the images of opposite sides. These
six angles serve as natural parameters: spherical or hyperbolic quadrilaterals
with prescribed angles at the corners form a one-parametric family, while
circular quadrilaterals with prescribed corners form a two-parametric family.

Theorem A2 can be compared with Jimbo’s asymptotics [30]. (A mis-
print in the main result in [30] was corrected in [5]). It follows from the
explicit formula expressing the asymptotics in terms of the monodromy that
for SU(2) or SL(2,R) monodromies this asymptotics is real if and only if
∆ = 0. For general monodromies (not in SU(2)) it is difficult to determine
directly when Jimbo’s formula gives a real asymptotics.

Appendix II. Topological classification of 4-circle chains.

We recall that a 4-circle chain consists of 4 labeled circles Cj on the
Riemann sphere such that

Cj 6= Cj+1, Cj ∩ Cj+1 6= ∅, j ∈ Z4. (64)

In this section we give a topological classification of generic chains. Generic
means that there are no tangent circles and no triple intersections. Two
chains are considered equivalent if there is an orientation-preserving home-
omorphism of the sphere which maps the union of circles of one chain onto
the union of circles of another chain.

In fact, we classify generic unordered quadruples of circles with the fol-
lowing property: each circle intersects at least two other circles. There are
two kinds of such quadruples: those in which each circle intersects all three
other circles (see Fig. 26) and those with a pair of non-intersecting circles (see
Fig. 27). Note that the quadruples in Fig. 26D and 27K are not reflection
symmetric, thus each of them represents two equivalence classes. We omit
the elementary but tedious proof that these exhaust all possibilities. To see
that all these cell decompositions are distinct we indicated the faces with
more than 3 edges in each cell decomposition.

It follows from the classification that the circles in Fig. 26 can be arbi-
trarily ordered to form a 4-circle chain, while the circles in Fig. 27 form a
4-circle chain when ordered so that non-intersecting circles are not adjacent.

Notice two equivalent reformulations of this problem: topological classifi-
cation of arrangements of four planes in the hyperbolic space, subject to the
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intersection condition (64), and topological classification of possible intersec-
tions of a sphere with four planes in the Euclidean space, under the condition
that the planes Pj can be so ordered that each line Pj ∩ Pj+1 intersects the
sphere.

Remarks and conjectures.

If all pairs of circles in the chain intersect, then there are only finitely
many nets on this chain with prescribed angles. This follows from the results
of [27]. In this paper, Ihlenburg proves that all circular quadrilaterals can
be obtained from finitely many topological types by applying four explicitly
defined operations. All these operations do not decrease angles, and three
of them increase some angles. The only operation which leaves all angles
unchanged requires two disjoint circles in the chain.

It follows that real solutions of PVI corresponding to all chains in Fig. 26
can have only finitely many special points on an interval between fixed sin-
gularities. On the other hand, our examples 4, 6 suggest that for all chains
containing pairs of disjoint circles the number of special points is infinite.
Moreover, it looks like it is infinite in one direction when there is one pair
of disjoint circles, and infinite in both directions if there are two such pairs,
like in Fig.21 which is the same as Fig. 27O.
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Appendix III. Moduli of conformal quadrilaterals.

Consider a closed rectangle Q in the plane with vertices 0, 1, 1 + ia, ia.
The number a > 0 is called the modulus, a = mod Q. Any Borel measurable
function ρ(z) ≥ 0 defines a conformal metric ρ(z)|dz| on Q: the length of a
curve γ and the area of a set E ⊂ Q are defined as

ℓρ(γ) =

∫

γ

ρ(z)|dz|, and Aρ(E) =

∫

E

ρ2(z)dxdy.

Let Γ be the set of all curves in Q connecting the horizontal sides. Define

ℓρ(Γ) = inf
γ∈Γ

ℓρ(γ),

and

λ(Γ) = sup
ρ

ℓ2ρ(Γ)

Aρ(Q)
, (65)

where the sup is taken over all metrics for which the numerator and denom-
inator are finite and not zero.

Lemma A2. [2, I.D, Example 1] λ(Γ) = a.

Formula (65) defines the extremal length of an arbitrary family of curves
Γ in Q. So defined extremal length is a conformal invariant of a family of
curves.

Let Γ′ be the family of all curves in Q connecting the vertical sides. Then
evidently

λ(Γ)λ(Γ′) = 1. (66)
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The following comparison inequalities immediately follow the from definition.

Lemma A3. [2, I.D, Theorem 2] Consider two families of curves Γ1 and Γ2

and suppose that every curve γ2 ∈ Γ2 contains some curve γ1 ∈ Γ1. Then
λ(Γ1) ≤ λ(Γ2).

The assumption means that Γ1 has “more curves” and the curves of Γ2

are “longer”.
For a metric ρ, the intrinsic distance dρ(E1, E2) between two subsets E1

and E2 of Q is defined as infimum of ℓρ(γ) over all curves connecting a point
in E1 with a point in E2.

Lemma A4. Suppose that a metric ρ has the following properties:

Aρ(B(r)) ≤ Kr2, (67)

for all r > 0 and for all intrinsic disks B(r) of radii r, the intrinsic ρ-distance
between the vertical sides is at least 2c, and the intrinsic ρ-distance between
the horizontal sides is less than ǫ/2.

Then mod Q ≤ δ, where

δ =
4(K + 1)

log(c/ǫ)
→ 0

as ǫ→ 0, for any fixed K > 0, c > 0.

Proof. Choose a curve γ0 connecting the horizontal sides, and such that
ℓρ(γ0) < ǫ. Let P be a point on γ0. Consider the closed ρ-disks B(ǫ) and
B(c) of radii ǫ and c, both centered at P . Then B(ǫ) contains γ0. Let Γ′

be the family of all curves in Q connecting the vertical sides. Every curve
γ′ of this family crosses γ0, therefore γ

′ intersects both B(ǫ) and Q\B(c).
Therefore

λ(Γ′) ≥ λ(Γ1), (68)

where Γ1 is the family of all curves in Q connecting B(ǫ) with Q\B(c).
To estimate λ(Γ1) from below, consider the metric τ(z)|dz| defined by the
function

τ(z) =
ρ(z)

log(c/ǫ)dρ(z, P )
, z ∈ B(c)\B(ǫ),

and zero otherwise. For every γ1 ∈ Γ1 we have

ℓτ (γ1) ≥
1

log(c/ǫ)

∫ c

ǫ

ρ(z)|dz|
dρ(z, P )

≥ 1

log(c/ǫ)

∫ c

ǫ

ds

s
≥ 1.
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Here we made the change of the variable s = dρ(z, P ) and used the evident
inequality ds ≤ ρ(z)|dz|.

To estimate the τ -area of Q we define r0 = ǫ, rk = 2kr0, k = 1, . . . , N,
N = [log2(c/ǫ)] + 1, and let Bk be the ρ-disk of radius rk centered at P .
Then, using (67), we obtain

Aρ(Q) ≤ 1

log2(c/ǫ)

N
∑

k=1

∫

Bk\Bk−1

ρ2(z)dxdy

r2k−1

≤ 4

log2(c/ǫ)

N
∑

k=1

Aρ(Bk)

r2k

≤ 4KN

log2(c/ǫ)
≤ 4(K + 1)

log(c/ǫ)
.

Thus λ(Γ1) ≥ (log(c/ǫ))/(4(K + 1)), and using (66) and (68), we obtain

mod Q = λ(Γ) ≤ 4(K + 1)/(log(c/ǫ)).

This proves the lemma.

The upper half-plane can be mapped conformally onto Q so that

(0, 1, x,∞) 7→ (0, 1, 1 + ia, ia)

by the Schwarz–Christoffel formula. Let

φ(z) =

∫ z

0

dζ
√

z(z − 1)(z − x)
.

Then the desired conformal map is φ(z)/φ(1), and the modulus a(x) =
−iφ(∞)/φ(1). It follows from Lemma A3 that x 7→ a(x) is increasing home-
omorphism of (1,∞) onto (0,+∞).

In our applications, the metric ρ arises as a pull-back of the standard
spherical metric of curvature 1 on the sphere S by a conformal local homeo-
morphism f : Q → S. If f is p-valent (which means that every point has at
most p preimages), then (67) is satisfied with K = πp. Indeed, for spherical
discs on S, (67) is satisfied with K = π by direct computation, and f(B(r))
is evidently contained in a disk of radius r in S.
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conformal blocks and Painlevé VI, J. High Energy Phys. 2014, no. 7, 144,
front matter+19 pp.

[35] M. Mazzocco, Picard and Chazy solutions to the Painlevé VI equation.
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(1981) 525–535.
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tions of the sixth Painlevé equation, Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (4) 27 (1998), no. 3-4, 379–425.

Department of Mathematics, Purdue University,
West Lafayette, IN 47907 USA

61


