Non-negative matrices

A. Eremenko

March 18, 2023

In this section we use the following terminology and notation: a square matrix A is called *non-negative* (*positive*) if all entries are non-negative (positive). This will be denoted by $A \ge 0$ or A > 0. Same notation will be applied to vectors.

Warning. In other sections of this course, notation $A \ge 0$, A > 0 may have completely different meaning!

For a square matrix A we denote by $\rho(A)$ the largest absolute value of an eigenvalue:

 $\rho(A) := \max\{|\lambda| : Ax = \lambda x \text{ for some } x \neq 0\}.$

Perron's Theorem. Suppose that A > 0. Then:

a) $p = \rho(A)$ is an eigenvalue.

b) The eigenspace corresponding to p is one-dimensional, and contains an eigenvector x > 0.

c) For all other eigenvalues $\lambda \neq p$ we have $|\lambda| < p$.

d) If λ is an eigenvalue different from p, then there is no non-negative eigenvector corresponding to λ .

e) p is a simple root of the characteristic equation.

Proof. Consider the set S consisting of all $t \ge 0$ such that $Ax \ge tx$ for some $x \ge 0$.

Let us check that the set S contains a maximal element.

This set S is not empty, moreover it contains some positive number. Indeed take $x = (1, 1..., 1)^T$. Then Ax > 0 because A > 0, so one can find t > 0 such that $Ax \ge tx$.

The set S is bounded. Indeed, it is easy to see that for $t \in S$ we have $t \leq n \max\{a_{i,j}\}$, where n is the size of A.

The set is closed: if $Ax_n = t_n x_n$ and $t_n \to t_\infty$, we can always assume that $||x_n|| = 1$, then take a subsequence such that $x_n \to x_\infty \ge 0$, $x \ne 0$. We will have $Ax_\infty \ge t_\infty x_\infty$ and $x_\infty \ne 0$, because $||x_\infty|| = 1$, so the limit t_∞ is in S.

Thus by a theorem from Analysis, there is a maximum element of S, and we denote it by p.

Now we show that p is an eigenvalue. We have $Ax \ge px$ for some $x \ge 0$, $x \ne 0$. So y := Ax - px is a non-negative vector. Suppose that $y \ne 0$. Then Ay > 0, because A is positive, and Ax > 0, so

$$AAx > pAx$$
,

and we can slightly increase p, which contradicts its definition. So y = 0 and we proved that p is an eigenvalue.

Now consider any eigenvalue λ of A. Then $Ax = \lambda x$ for some $x \neq 0$. Denote by |x| the vector with components $|x_i|$. Then

$$A|x| \ge |Ax| = |\lambda x| = |\lambda||x|. \tag{1}$$

So $\lambda \leq p$ by the definition of p. This proves that p is in fact the eigenvalue of maximal modulus so we have a).

As we have Ax = px for some $x \ge 0$ and $x \ne 0$, we conclude that x > 0because Ax > 0 and p > 0. To prove b), it remains to show that there cannot be another linearly independent eigenvector corresponding to p. Let y be one. We may assume that y is real (because A - pI is a real matric so its null space has a real basis). Then x + cy is also an eigenvector corresponding to eigenvalue p, which is linearly independent of x. Then we can choose a real c, so that x + cy is non-negative, and non-zero, but one of its coordinate is 0. Indeed, all coordinates of x are positive, so for small |c| the coordinates of x + cy are also positive. They cannot remain positive for all real c. So there is a limiting value of c (positive or negative) for which one coordinate becomes zero for the first time. For this c the vector x + cy is not zero because x and y are linearly independent, so it is non-negative, non-zero, with one zero coordinate. But as A(x + cy) = p(x + cy), we obtain a contradiction because all coordinates of A(x + cy) must be positive. This completes the proof of b).

Now we want to prove c): that for each eigenvalue $\lambda \neq p$ we actually have $|\lambda| < p$. (We already know from a) that $|\lambda| \leq p$.) Proving this by contradiction, suppose that $|\lambda| = p$ but $\lambda \neq p$. We proved above that $Ay \geq py, y \geq 0$ implies Ay = py. Applying this to (1) with y = |x| we conclude that (1) must hold with equality: $A|x| = |\lambda||x|$. In particular, |Ax| = A|x|, that is

$$\sum_{j} a_{i,j} |x_j| = \left| \sum_{j} a_{i,j} x_j \right|,$$

which means that all x_j must have the same argument θ . Multiplying them on $e^{-i\theta}$ we obtain a new vector $z \ge 0$ such that $Az = \lambda z = |\lambda||z|$. So $\lambda = |\lambda| = p$, contrary to our assumption. The contradiction shows that $|\lambda| < p$, which is c).

To prove d), notice that A and A^T have the same characteristic polynomial. We proved that A has a positive eigenvalue p which has maximim modulus among all eigenvalues, and that there is a positive eigenvector corresponding to it. Then the same applies to A^T . This means that there is a *left eigenvector*, a row we ctor w satisfying

$$wA = pw, \quad w > 0.$$

Now if u is any (right) eigenvector corresponding to some eigenvalue λ , then we have we have

$$p(w, u) = pwu = wAu = \lambda(w, u).$$

As $\lambda \neq p$ we conclude that wu = 0, and since $u \neq 0$, vector u cannot be non-negative because w is positive. This proves d).

The proof of e) requires Jordan's theorem. Suppose by contradiction that p is a multiple root of the characteristic equation. As we proved that the eigenspace of p has dimension 1 (see b)), we conclude that there must be a generalized eigenvector y. So we have x > 0, Ax = px and

$$Ay - py = xs \tag{2}$$

with some y. We can always choose this y to be real. Moreover, we can add to y any multiple of x, and y will still be a generalized eigenvector. Adding cx with large possitive c, we can make y positive. Equation (2) with x > 0implies that Ay > py, and y is positive, this contradicts the definition of p. This proves e) and completes the proof of the theorem.

The eigenvalue $\rho(A)$ is called the Perron eigenvalue, and a corresponding positive eigenvector is called Perron's eigenvector.

A square matrix is called *stochastic* if $A \ge 0$ and all column sums are equal to 1.

Theorem. For a positive stochastic matrix $\rho(A) = 1$. If x is any non-zero, non-negative vector, then

$$\lim_{m \to \infty} A^m x = cv$$

where v is a Perron eigenvector and c > 0.

Proof. Let w = (1, 1, ..., 1). The condition that A is stochastic can be written as

$$wA = w.$$

Applying d) of Perron's theorem to A^T we conclude that $\rho(A^T) = \rho(A) = 1$ (see the proof of d)). To prove the second statement we expand x into linear combination of eigenvectors and generalized eigenvectors:

$$x = c_1 v_1 + \ldots + c_n v_n.$$

Assume tat v_1 is a Perron eigenvector. Now apply a high power of A. Then we have $A^m v_1 = v_1$. For genuine eigenvector v_j we have $A^m v_j = \lambda_j^m v_j \to 0$, because $|\lambda_j| < 1$. So if all v_j are genuine, we have

$$A^m x \to c_1 v_1. \tag{3}$$

To see that $c_1 > 0$, multiply both sides of (3) on w = (1, 1, ..., 1) from the left and use wA = w.

Finally, if some of the v_j are generalized, a similar argument can be performed to prove that $A^m v_j \to 0$. For example, if $Av = \lambda v$ and $Au = \lambda u + v$, then $A^2u = \lambda^2 u + 2\lambda v$, $A^3u = \lambda^3 u + 3\lambda^2 v$, and so on.