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In this section we use the following terminology and notation: a square
matrix A is called non-negative (positive) if all entries are non-negative (pos-
itive). This will be denoted by A ≥ 0 or A > 0. Same notation will be
applied to vectors.

Warning. In other sections of this course, notation A ≥ 0, A > 0 may
have completely different meaning!

For a square matrix A we denote by ρ(A) the largest absolute value of an
eigenvalue:

ρ(A) := max{|λ| : Ax = λx for some x ̸= 0}.

Perron’s Theorem. Suppose that A > 0. Then:
a) p = ρ(A) is an eigenvalue.
b) The eigenspace corresponding to p is one-dimensional, and contains an
eigenvector x > 0.
c) For all other eigenvalues λ ̸= p we have |λ| < p.
d) If λ is an eigenvalue different from p, then there is no non-negative eigen-
vector corresponding to λ.
e) p is a simple root of the characteristic equation.

Proof. Consider the set S consisting of all t ≥ 0 such that Ax ≥ tx for
some x ≥ 0.

Let us check that the set S contains a maximal element.
This set S is not empty, moreover it contains some positive number.

Indeed take x = (1, 1 . . . , 1)T . Then Ax > 0 because A > 0, so one can find
t > 0 such that Ax ≥ tx.

The set S is bounded. Indeed, it is easy to see that for t ∈ S we have
t ≤ nmax{ai,j}, where n is the size of A.
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The set is closed: if Axn = tnxn and tn → t∞, we can always assume that
∥xn∥ = 1, then take a subsequence such that xn → x∞ ≥ 0, x ̸= 0. We will
have Ax∞ ≥ t∞x∞ and x∞ ̸= 0, because ∥x∞∥ = 1, so the limit t∞ is in S.

Thus by a theorem from Analysis, there is a maximum element of S, and
we denote it by p.

Now we show that p is an eigenvalue. We have Ax ≥ px for some x ≥
0, x ̸= 0. So y := Ax − px is a non-negative vector. Suppose that y ̸= 0.
Then Ay > 0, because A is positive, and Ax > 0, so

AAx > pAx,

and we can slightly increase p, which contradicts its definition. So y = 0 and
we proved that p is an eigenvalue.

Now consider any eigenvalue λ of A. Then Ax = λx for some x ̸= 0.
Denote by |x| the vector with cpomponents |xj|. Then

A|x| ≥ |Ax| = |λx| = |λ||x|. (1)

So λ ≤ p by the definition of p. This proves that p is in fact the eigenvalue
of maximal modulus so we have a).

As we have Ax = px for some x ≥ 0 and x ̸= 0, we conclude that x > 0
because Ax > 0 and p > 0. To prove b), it remains to show that there
cannot be another linearly independent eigenvector corresponding to p. Let
y be one. We may assume that y is real (because A−pI is a real matric so its
null space has a real basis). Then x+ cy is also an eigenvector corresponding
to eigenvalue p, which is linearly independent of x. Then we can choose a
real c, so that x+ cy is non-negative, and non-zero, but one of its coordinate
is 0. Indeed, all coordinates of x are positive, so for small |c| the coordinates
of x + cy are also positive. They cannot remain positive for all real c. So
there is a limiting value of c (positive or negative) for which one coordinate
becomes zero for the first time. For this c the vector x+cy is not zero because
x and y are linearly independent, so it is non-negative, non-zero, with one
zero coordinate. But as A(x + cy) = p(x + cy), we obtain a contradiction
because all coordinates of A(x + cy) must be positive. This completes the
proof of b).

Now we want to prove c): that for each eigenvalue λ ̸= p we actually
have |λ| < p. (We already know from a) that |λ| ≤ p.) Proving this by
contradiction, suppose that |λ| = p but λ ̸= p. We proved above that
Ay ≥ py, y ≥ 0 implies Ay = py. Applying this to (1) with y = |x| we
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conclude that (1) must hold with equality: A|x| = |λ||x|. In particular,
|Ax| = A|x|, that is ∑

j

ai,j|xj| =

∣∣∣∣∣∣
∑
j

ai,jxj

∣∣∣∣∣∣ ,
which means that all xj must have the same argument θ. Multiplying them
on e−iθ we obtain a new vector z ≥ 0 such that Az = λz = |λ||z|. So
λ = |λ| = p, contrary to our assumption. The contradiction shows that
|λ| < p, which is c).

To prove d), notice that A and AT have the same characteristic poly-
nomial. We proved that A has a positive eigenvalue p which has maximim
modulus among all eigenvalues, and that there is a positive eigenvector cor-
responding to it. Then the same applies to AT . This means that there is a
left eigenvector, a row wector w satisfying

wA = pw, w > 0.

Now if u is any (right) eigenvector corresponding to some eigenvalue λ, then
we have we have

p(w, u) = pwu = wAu = λ(w, u).

As λ ̸= p we conclude that wu = 0, and since u ̸= 0, vector u cannot be
non-negative because w is positive. This proves d).

The proof of e) requires Jordan’s theorem. Suppose by contradiction that
p is a multiple root of the characteristic equation. As we proved that the
eigenspace of p has dimension 1 (see b)), we conclude that there must be a
generalized eigenvector y. So we have x > 0, Ax = px and

Ay − py = xs (2)

with some y. We can always choose this y to be real. Moreover, we can add
to y any multiple of x, and y will still be a generalized eigenvector. Adding
cx with large possitive c, we can make y positive. Equation (2) with x > 0
implies that Ay > py, and y is positive, this contradicts the definition of p.
This proves e) and completes the proof of the theorem.

The eigenvalue ρ(A) is called the Perron eigenvalue, and a corresponding
positive eigenvector is called Perron’s eigenvector.

A square matrix is called stochastic if A ≥ 0 and all column sums are
equal to 1.
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Theorem. For a positive stochastic matrix ρ(A) = 1. If x is any non-zero,
non-negative vector, then

lim
m→∞

Amx = cv,

where v is a Perron eigenvector and c > 0.

Proof. Let w = (1, 1, . . . , 1). The condition that A is stochastic can be
written as

wA = w.

Applying d) of Perron’s theorem to AT we conclude that ρ(AT ) = ρ(A) = 1
(see the proof of d)). To prove the second statement we expand x into linear
combination of eigenvectors and generalized eigenvectors:

x = c1v1 + . . .+ cnvn.

Assume tat v1 is a Perron eigenvector. Now apply a high power of A. Then
we have Amv1 = v1. For genuine eigenvector vj we have Amvj = λm

j vj → 0,
because |λj| < 1. So if all vj are genuine, we have

Amx → c1v1. (3)

To see that c1 > 0, multiply both sides of (3) on w = (1, 1, ..., 1) from the
left and use wA = w.

Finally, if some of the vj are generalized, a similar argument can be
performed to prove that Amvj → 0. For example, if Av = λv and Au =
λu+ v, then A2u = λ2u+ 2λv, A3u = λ3u+ 3λ2v, and so on.
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