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In this section we use the following terminology and notation: a square
matrix A is called non-negative (positive) if all entries are non-negative (pos-
itive). This will be denoted by A > 0 or A > 0. Same notation will be
applied to vectors.

Warning. In other sections of this course, notation A > 0, A > 0 may
have completely different meaning!

For a square matrix A we denote by p(A) the largest absolute value of an
eigenvalue:

p(A) ;= max{|\| : Az = Az for some = # 0}.

Perron’s Theorem. Suppose that A > 0. Then:

a) p=p(A) is an eigenvalue.

b) The eigenspace corresponding to p is one-dimensional, and contains an
eigenvector x > 0.

¢) For all other eigenvalues A # p we have |A| < p.

d) If X is an eigenvalue different from p, then there is no non-negative eigen-
vector corresponding to .

e) p is a simple root of the characteristic equation.

Proof. Consider the set S consisting of all £ > 0 such that Az > tx for
some z > 0.

Let us check that the set S contains a maximal element.

This set S is not empty, moreover it contains some positive number.
Indeed take x = (1,1...,1)T. Then Az > 0 because A > 0, so one can find
t > 0 such that Az > tz.

The set S is bounded. Indeed, it is easy to see that for t € S we have
t < nmax{a; ;}, where n is the size of A.



The set is closed: if Az, = t,z, and t,, — t,, we can always assume that
|zn]] = 1, then take a subsequence such that z,, — z,, > 0, x # 0. We will
have Ay > tooToo and zo # 0, because ||z || = 1, so the limit ¢, is in S.

Thus by a theorem from Analysis, there is a maximum element of .S, and
we denote it by p.

Now we show that p is an eigenvalue. We have Az > pz for some z >
0, x #0. So y := Axr — px is a non-negative vector. Suppose that y # 0.
Then Ay > 0, because A is positive, and Az > 0, so

AAzx > pAx,

and we can slightly increase p, which contradicts its definition. So y = 0 and
we proved that p is an eigenvalue.

Now consider any eigenvalue A\ of A. Then Axr = Az for some z # 0.
Denote by |z| the vector with cpomponents |z;|. Then

Alz| = [Az] = [z = [A]|z]. (1)

So A < p by the definition of p. This proves that p is in fact the eigenvalue
of maximal modulus so we have a).

As we have Ax = px for some z > 0 and = # 0, we conclude that = > 0
because Az > 0 and p > 0. To prove b), it remains to show that there
cannot be another linearly independent eigenvector corresponding to p. Let
y be one. We may assume that y is real (because A —pl is a real matric so its
null space has a real basis). Then x + cy is also an eigenvector corresponding
to eigenvalue p, which is linearly independent of x. Then we can choose a
real ¢, so that x + cy is non-negative, and non-zero, but one of its coordinate
is 0. Indeed, all coordinates of = are positive, so for small |c| the coordinates
of © + cy are also positive. They cannot remain positive for all real ¢. So
there is a limiting value of ¢ (positive or negative) for which one coordinate
becomes zero for the first time. For this ¢ the vector x+cy is not zero because
x and y are linearly independent, so it is non-negative, non-zero, with one
zero coordinate. But as A(x + cy) = p(z + cy), we obtain a contradiction
because all coordinates of A(x + cy) must be positive. This completes the
proof of b).

Now we want to prove c): that for each eigenvalue A # p we actually
have |A| < p. (We already know from a) that |A\| < p.) Proving this by
contradiction, suppose that |[A\| = p but A # p. We proved above that
Ay > py, y > 0 implies Ay = py. Applying this to (1) with y = |z| we
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conclude that (1) must hold with equality: Alz| = |A||z]. In particular,
|Az| = A|x|, that is

bl
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which means that all z; must have the same argument 6. Multiplying them
on e~ we obtain a new vector z > 0 such that Az = Xz = [)||z]. So
A = |\ = p, contrary to our assumption. The contradiction shows that
|A| < p, which is c).

To prove d), notice that A and AT have the same characteristic poly-
nomial. We proved that A has a positive eigenvalue p which has maximim
modulus among all eigenvalues, and that there is a positive eigenvector cor-
responding to it. Then the same applies to A”. This means that there is a

left eigenvector, a row wector w satisfying

wA =pw, w>0.

Now if u is any (right) eigenvector corresponding to some eigenvalue A, then
we have we have
p(w,u) = pwu = wAu = Mw, u).

As A\ # p we conclude that wu = 0, and since u # 0, vector u cannot be
non-negative because w is positive. This proves d).

The proof of e) requires Jordan’s theorem. Suppose by contradiction that
p is a multiple root of the characteristic equation. As we proved that the
eigenspace of p has dimension 1 (see b)), we conclude that there must be a
generalized eigenvector y. So we have z > 0, Az = pxr and

Ay —py = xs (2)

with some y. We can always choose this y to be real. Moreover, we can add
to y any multiple of z, and y will still be a generalized eigenvector. Adding
cx with large possitive ¢, we can make y positive. Equation (2) with z > 0
implies that Ay > py, and y is positive, this contradicts the definition of p.
This proves e) and completes the proof of the theorem.

The eigenvalue p(A) is called the Perron eigenvalue, and a corresponding
positive eigenvector is called Perron’s eigenvector.

A square matrix is called stochastic if A > 0 and all column sums are
equal to 1.



Theorem. For a positive stochastic matriz p(A) = 1. If x is any non-zero,
non-negative vector, then

lim A™x = cv,
m—00

where v is a Perron eigenvector and ¢ > 0.

Proof. Let w = (1,1,...,1). The condition that A is stochastic can be
written as
wA = w.

Applying d) of Perron’s theorem to AT we conclude that p(A?) = p(A) =1
(see the proof of d)). To prove the second statement we expand z into linear
combination of eigenvectors and generalized eigenvectors:

T =CU1 + ...+ CrUp.

Assume tat vy is a Perron eigenvector. Now apply a high power of A. Then
we have A™v; = vy. For genuine eigenvector v; we have A™v; = AT'v; — 0,
because |A;| < 1. So if all v; are genuine, we have

A" — cvy. (3)

To see that ¢; > 0, multiply both sides of (3) on w = (1,1,...,1) from the
left and use wA = w.

Finally, if some of the v; are generalized, a similar argument can be
performed to prove that A™v; — 0. For example, if Av = v and Au =
\u + v, then A%u = N\2u + 2\, A3u = X3u + 3)\%v, and so on.



