Math 520, Spring 2007, Practice exam

1. Let f be a (2π) -periodic function such that $f(x) = xe^{-x}$ for $-\pi < x < \pi$. Suppose that $f(x) = g(x) + h(x), -\pi < x < \pi$ where

$$g(x) = \sum_{n=0}^{\infty} a_n \cos nx$$
, and $h(x) = \sum_{n=1}^{\infty} b_n \sin nx$.

Find a_0 , g and h. Compute $h(\pi)$.

- 2. a) Find the Fourier series of the 2π -periodic extension of the function $f(x) = x, -\pi < x < \pi$.
 - b) Find the sum of this series at the points $x = \pm \pi$.
- c) Using the fact that $(x^3)'' = 6x$, and a), find the Fourier series of the 2π -periodic extension of $f(x) = x^3$, $-\pi < x < \pi$.
- 3. Find the best approximation in $L^2(0,\pi)$ to the function $f(x) = \cos x$ by a linear combination of functions $\sin x$, $\sin 2x$ and $\sin 3x$.
- 4. Solve the equation $u_t = u_{xx} + e^{-t} \sin x$ for $0 \le x \le \pi$ and $t \ge 0$ with the boundary conditions $u(0,1) = u(\pi,t) = 0$ and initial condition $u(x,0) = \sin 2x$.
- 5. Find the eigenvalues and eigenfunctions for the following Sturm-Liouville problem on [0,1]:

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(1) = 0$.

6. Consider the wave equation on the half-line $[0, +\infty)$:

$$u_{tt} = u_{xx},$$

The boundary conditions are u(0,t)=0 and $u(+\infty,t)=0$ The initial condition is $u_t(x)=0$, $t\geq 0$ and u(x,0)=1, $1\leq x\leq 2$ and zero for the rest of x. Make pictures of the graph of u(x,t) as a function of x for the following moments of time: t=1, t=1.5, t=2, t=3, t=4.