Let

$$
I=\int_{0}^{\infty} \frac{d x}{x^{3}+1} .
$$

Following the hint, we integrate $f(z)=1 /\left(z^{3}+1\right)$ over the boundary of the sector

$$
S_{\rho}=\left\{r e^{i \theta}: 0<\theta<2 \pi / 3,0<r<\rho\right\} .
$$

The integral over the circular arc tends to 0 , so when $\rho \rightarrow+\infty$

$$
\int_{\partial S_{\rho}} f(z) d z \rightarrow I\left(1-e^{2 \pi i / 3}\right)
$$

On the other hand, S_{ρ} contains one simple pole of our function f, at the point $a:=e^{\pi i / 3}$. So

$$
\int_{\partial S_{\rho}} f(z) d z=2 \pi i \operatorname{res}_{a} f(z)=\frac{1}{3 e^{2 \pi i / 3}} .
$$

So

$$
I=\frac{2 \pi i e^{-2 \pi i / 3}}{3\left(1-e^{2 \pi i / 3}\right)}=\frac{\pi}{3 \sin (\pi / 3)}=\frac{2 \pi}{3 \sqrt{3}} .
$$

