Practice problems set 1

February 9, 2021

1. Inspect table 1 on p. 26-28 and tell which of the Fourier series $1-20$ converge uniformly on the interval where the function in the left column is defined.
2. Let $f(x)=e^{x}, 0 \leq x \leq \pi$, and let $F(x)$ be the sum of its sine Fourier series. Find $F(0)$.
3. Which of these functions belongs to $L^{2}(-\infty,+\infty)$:
a) $(\sin x) / x$,
b) $(\sin \sqrt{|x|}) / \sqrt{|x|}$,
c) $x^{2} e^{-|x|}$,
d) $x /\left(1+x^{2}\right)$.
4. Consider the following sequences of functions $f_{n}(x)=x^{n}$ and $g_{n}(x)=$ $\sqrt{n} x^{n}$, defined on the interval $(0,1)$. Which of these two sequences converge to 0
a) at every point of the interval $(0,1)$
b) uniformly on the interval $(0,1)$.
c) in the sense of $L^{2}(0,1)$.
5. Consider the sequence of functions $f_{n}(x)=e^{-|x-n|}$ on the whole real line. As $n \rightarrow+\infty$, does this sequence converge:
a) at every real pont?
b) uniformly on the whole real line?
b) in $L^{2}(-\infty,+\infty)$?
6. Which of the following sequences are sine Fourier coefficients of some function $f \in L^{2}(0,1)$?
a) $b_{n}=1 / n$
b) $b_{n}=1 / \sqrt{n}$
c) $b_{n}=1 /(\sqrt{n} \log (n+1))$.
7. Using Table 1 on p. 26-28, find the sum of the series

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} .
$$

