Complex numbers and trigonometry

September 23, 2019

1. Compute

$$
\left(\frac{1-i}{1+i}\right)^{10}
$$

(To compute means to express as $a+b i$, where a and b are real numbers, expressed as simple as possible.)
2. Find all four solutions of $z^{4}=-1$.
3. Compute the first five significant digits of $\sin 1^{\circ}$, using only paper and pencil (no calculators, no computers, no books, no Internet). You may use $\pi \approx 3.1415927$. (This computation was performed for the first time by Ptolemy in 2-nd century AD. But he did not know everything that you learned in this class.)
4. A wire is stretched tight between two points in the plane at a distance 1000 feet. Then 1 inch is added to the wire, so that it becomes a bit loose, and the middle is lifted as much as possible over the plane. Can a cat pass through the gap between the plane and the wire? Can a car pass under the wire?
5. Solve the equation $z^{3}=1$ in radicals, that is without using trigonometric or exponential functions, only roots of rational numbers.
6. Solve the equation $z^{5}=1$ in radicals.
7. The map $z \mapsto \bar{z}$ is a reflection in the real axis. Find a formulas for the reflection in the imaginary axis, and in the line $\Re z=\Im z$. Your formulas must be of the form $z \mapsto c \bar{z}$ with an appropriate c.
8. Express $\cos (5 t)$ in terms of cost.
9. Express $\sin (4 t)$ in terms of $\cos t$ and $\sin t$.
10. Use Euler's formula to find a closed form expression for the sum

$$
\sin t+\sin (2 t)+\ldots+\sin (n t)
$$

Your answer should contain only real numbers when t is real.
11. Use Euler's formula to find a closed form expression for the sum

$$
1+\cos t+\cos (2 t)+\ldots+\cos (n t)
$$

12. Find all complex solutions of the equation

$$
\cos z=2
$$

and make a picture of them.
13. If complex numbers are interpreted as vectors in the plane, what is the geometric meaning of the quantity $\Re\left(z_{1} \overline{z_{2}}\right)$?
14. Solutions of a cubic equation

$$
z^{3}=a z+b=0 .
$$

are given by Cardano's formula

$$
z=\sqrt[3]{\frac{b}{2}-\sqrt{\frac{b^{2}}{4}-\frac{a^{3}}{27}}}+\sqrt[3]{\frac{b}{2}+\sqrt{\frac{b^{2}}{4}-\frac{a^{3}}{27}}}
$$

Does this formula give a correct answer for $a=1$ and $b=0$?

