Projectors

A. Eremenko

March 18, 2023

1. An operator $P: V \to V$ is called *idempotent* if

$$P^2 = P. (1)$$

Let N_P be the null-space and R_P the range (column space). Then

$$N_P \cap R_P = \{0\}. \tag{2}$$

Indeed, suppose that $x \in N_P \cap R_P$. This means that Px = 0 and x = Py for some $y \in V$. Then

$$x = Py = PPy = Px = 0.$$

Then

Every vector $x \in X$ can be represented as a sum x = u + v, where $u \in R_P$ and $v \in N_p$.

Indeed, we can take u = Px and v = x - Px. Then $u \in R_p$ and $v \in N_P$ because Pu = Px - PPx = 0. Uniqueness of representation follows from (2).

Whenever we have k subspaces U_j with the property that every vector in V can be uniquely represented as a sum $u_1 + \ldots + u_k$ where $u_j \in U_j$, we say that V is a *direct sum* of the U_j , and write

$$V = U_1 \oplus U_2 \oplus \ldots \oplus U_k. \tag{3}$$

So for every idempotent P we have

$$V = N_P \oplus R_P$$
.

It follows that all idempotents are diagonalizable, with eigenvalues 0 and 1. Indeed, N_P is the eigenspace corresponding to eigenvalue 0, and R_P is the eigenspace corresponding to eigenvalue 1. Choose a basis of the space V consisting of a basis in R_P and a basis in N_P . It consists of eigenvectors.

If P is idempotent then I - P is also idempotent.

Indeed,

$$(I-P)^2 = I - 2P + P^2 = I - 2P + P = I - P.$$

2. An idempotent which is Hermitian is called a *projector*. So in addition to (1) projectors satisfy

$$P^* = P, (4)$$

where the star denoted Hermitian conjugation (transposition and complex conjugation). An idempotent is a projector if and only if $N_P \perp R_P$. Indeed, if $x \in N_P$ and $y \in R_P$, that is Px = 0 and y = Pw then

$$(x,y) = (x, Pw) = (Px, w) = (0, w) = 0.$$

Here we only used that P is Hermitian, so for every Hermitian operator A, the null space and the column space are orthogonal.

There is a one-to-one correspondence between projectors and subspaces $U \subset V$. To each projector we put into correspondence the subspace $R_P = P(V)$.

And conversely, for each subspace U we have the direct decomposition

$$V = U \oplus U^{\perp},$$

so each $x \in V$ can be written as x = u + v, where $u \in U$, $v \in U^{\perp}$ and we define Px = u. Then $R_P = U$.

Let us check that our new definition is equivalent to the old definition of the projector. According to the old definition, a projector onto the space U is defined by the property that

$$(x - Px) \perp w \quad \text{for every} \quad w \in U,$$
 (5)

and $P = A(A^*A)^{-1}A^*$, for some matrix A. Now it is easy to check that P so defined satisfy (1) and (4). Conversely, if P satisfies (1) and (4) then we

have a direct decomposition $V = R_P \oplus N_P$, where $R_P \perp N_P$. So if we write x = u + v, $u \in R_P$, $v \in N_P$ and define Px = u, then x - Px = v is indeed perpendicular to every $w \in R_P$, and we obtain (5).

3. Let P_1, P_2 be two projectors, $U_1 = P_1(V), U_2 = P_2(V)$. Then $U_1 \perp U_2$ if and only if $P_1P_2 = P_2P_1 = 0$.

Proof. Let $x_i = P_i y_i$, $i \in \{1, 2\}$ be arbitrary elements of U_i . Then

$$(x_1, x_2) = (P_1y_1, P_2y_2) = (P_2P_1y_1, y_2) = (y_1, P_1P_2y_2).$$

Then $U_1 \perp U_2$ if and only if this is zero for each y_1, y_2 . This happens if and only if $P_1P_2 = P_2P_1 = 0$.

Again, we did not use that P_1 and P_2 are projectors: for any two Hermitian operators A and B the column spaces are orthogonal if and only if AB = BA = 0.

Corollary. For Hermitian operators AB = 0 implies BA = 0.

Exercise. Show by example that this is not true for arbitrary square matrices.

4. Partition of unity. Suppose that V is represented as a direct sum (3) of k orthogonal subspaces U_i , and let P_i be projectors onto U_i . Then we have

$$I = P_1 + \dots P_k, \quad P_i P_j = 0.$$
 (6)

And vice versa: if (6) holds and $U_j = R_{P_j}$ then we have (3) and $U_i \perp U_j$. Such a family of projectors is called a *partition of unity*.

For example, let A be a Hermitian (or more generally, normal) operator. Let λ_j be all its eigenvalues, and U_j the corresponding eigenspaces. Then U_j are orthogonal to each other and (3) holds. So

To every normal operator A a partition of unity corresponds such that

$$A = \lambda_1 P_1 + \ldots + \lambda_k P_k.$$

5. Permutable projectors.

The product of two projectors is a projector if and only if they commute.

Proof. First of all a product of Hermitian operators is Hermitian if and only if they commute. Indeed, let A and B be Hermitian, then

$$(AB)^* = B^*A^* = BA.$$

This is equal to AB iff A and B commute.

Now suppose that P_1 and P_2 are projectors, $P_1P_2=P_2P_1$, and $P=P_1P_2$. Then

$$P^2 = P_1 P_2 P_1 P_2 = L_1^2 P_2^2 = P_1 P_2 = P,$$

so we have (1), and

$$P^* = (P_1 P_2)^* = P_2^* P_1^* = P_2 P_1 = P_1 P_2 = P,$$

so we have (4).

Exercise. Suppose that we have two commuting projectors, $P_1P_2 = P_2P_1$. Let $U_i = P_i(V)$.

Then P_1P_2 is the projector onto $U_1 \cap U_2$, and

$$I - (I - P_1)(I - P_2) = P_1 + P_2 - P_1P_2$$

projects onto the span $U_1 + U_2 := \{u_1 + u_2 : u_1 \in U_1, u_2 \in U_2\}.$

6. Orthoprojectors decrease length.

First we prove a useful formula

$$||Px||^2 = (Px, Px) = (P^2x, x) = (Px, x).$$
 (7)

Second, $(x - Px) \perp Px$ so

$$||x||^2 = ||Px||^2 + ||x - Px||^2 \ge ||Px||^2.$$

This property actually characterizes projectors among all idempotents:

Exercise. Let P be idempotent, $P^2 = P$. Then $||Pz|| \le ||x||$ for all x if and only if P is Hermitian.

Proof. Suppose that some vector $u \in R_P$ is not orthogonal to N_P , and v is the projection of u onto N_P . Then ||u-v|| < ||u|| and u = P(u-v), so ||u-v|| < ||P(u-v)||, contradiction.

7. A sum

$$P = P_1 + \dots, +P_m$$

of projectors is a projector if and only if the summands are orthogonal to each other, that is $P_iP_j=0$, $i\neq j$.

Proof. It is clear that the sum is Hermitian. Now, if $P_iP_j=0$ for $i\neq j$, then

$$P^2 = (P_1 + \ldots + P_m)^2 = P_1^2 + \ldots + P_m^2 = P_1 + \ldots + P_m = P_m^2$$

Now suppose that P is idempotent. Fix a $k \in \{1, ..., m\}$ and consider $x \in R_{P_k}$ that is $x = P_k x$. Then, using (7),

$$||x||^2 = ||P_k x||^2 \le \sum_{j=1}^m ||P_j x||^2 = \sum_{j=1}^n (P_j x, x) = (Px, x) = ||Px||^2 = ||x||^2.$$

this implies that $P_j x = 0$ for all $j \neq k$. So $P_j P_k = 0$ for all $j \neq k$.

8. A difference $P = P_1 - P_2$ of projectors is a projector if and only if it is idempotent.

Indeed, a sum or a difference of Hermitian operators is always Hermitian.

Corollary. If P is a projector then I-P is a projector. If P projects onto U then I-P projects onto U^{\perp} .

9. Let U_j , $1 \leq j \leq m$ be an arbitrary finite collection of subspaces, let P_j be projectors onto the U_j , and let P be the projector on the intersection $\cap_j U_j$. In general, P is not the product of P_j (see section 4). However we have the following formula

$$P = \lim_{k \to \infty} \left(\prod_{j=1}^{m} P^j \right)^k,$$

in the pointwise sense.

10. An operator A is called an *involution* if

$$A^2 = I. (8)$$

Exercise. Prove that A is an involution if and only if

$$A = I - 2P, (9)$$

where P is an idempotent.

For any involution operator A we define the fixed subspace

$$F_A = \{x : Rx = x\}.$$

If an involution is Hermitian, and F_A is non-trivial, then it is called a reflection. This happens if and only if P in (9) is a projector onto a non-trivial subspace.

As all Hermitian operators, reflections are diagonalizable, their eigenvalues can be only ± 1 in view of (9) and the theorem of mapping of spectra. So it is also unitary.

Exercise. Prove that all operators which are Hermitian and unitary are reflections.

The subspace F_A is the eigenspace with eigenvalue 1, and the orthogonal complement F_A^T is the eigenspace corresponding to -1.

A reflection with respect to a hyperplane perpendicular to a unit vector c is

$$Rx = x - 2(c, x).$$