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Value distribution theory studies the distribution of a-points, which
are solutions of f (z) = a, for a meromorphic function f : C→ C
and for various points a in the Riemann sphere.
For two values of a, the a-points can be arbitrarily assigned, and
Nevanlinna noticed in 1966 that one cannot arbitrarily assign
a-points for three values of a. So one can ask for a condition on
three sequences to be 0, 1 and ∞-points of some meromorphic
function.
Known results by Rubel and C.-C. Yang, Ozawa, Winkler and
others indicate that it is probably hopeless to look for a necessary
and sufficient condition. For example, if (an)∞n=1 and (bn)∞n=1 are
arbitrary sequences tending to infinity, then at least one of the
three pairs

((an)∞n=1, (bn)∞n=1) , ((an)∞n=2, (bn)∞n=1) , ((an)∞n=3, (bn)∞n=1)

is not a 0− 1 sequence of any entire function.



So it seems reasonable to modify the problem:

Let A,B,C be three disjoint sets in the complex plane. Does there
exist a meromorphic function whose all zeros are in A, 1-points are
in B and poles are in C?

Besides intrinsic interest, this problem has a relation to control
theory.
We restrict ourselves to the simplest setting when the sets A,B,C
are finite unions of rays from the origin or sectors.
The subject of meromorphic functions with a-points on rays seems
to have some mysterious connection with analytic theory of linear
differential equations, as we will see in examples below.



Two principal classical results are the following:

Theorem of Edrei. If all zeros and 1-points of an entire function
f belong to finitely many rays then the order of f is finite. It is at
most π/ω, where ω is the smallest angle between two adjacent
rays.

This is remarkable since a condition on arguments of a-points
implies a growth restriction.

Theorem of Biernacki and Milloux. For a transcendental entire
function of finite order, it is impossible for zeros to have a limiting
direction, and for 1-points to have a different limiting direction.

(We say that a sequence zk has a limiting direction θ if
arg zk → θ.)



Combining these two theorems we conclude

Corollary. There is no transcendental entire function whose zeros
lie on a ray, while 1-points belong to another ray.

We notice that in Edrei’s theorem it is important that a-points
belong to rays rather than just have limiting directions: for any
two distinct directions θ1 and θ2, one can construct an entire
function of infinite order whose zeros have limiting direction θ1 and
1-points have limiting direction θ2.
This also shows that the a priori restriction of finite order is
essential in the Biernacki–Milloux theorem and in the Corollary.



Next we consider the case of 3 rays from the origin.

Theorem 1. Suppose that zeros of a transcendental entire
function belong to a ray L0, and 1-points belong to the union of
two rays L−1 and L1 both distinct from L0, and suppose that the
numbers of zeros and 1-points are both infinite. Then

∠(L0, L1) = ∠(L0, L−1) < π/2.

It is interesting that there are indeed examples of such functions,
with any angle α = ∠(L0, L1) ≤ π/3 and α = 2π/5. It is unknown
whether other angles α ∈ (π/3, π/2) can occur.



These examples arise from a simple differential equation

−y ′′ + xmy = λy , x > 0.

If y0(x , λ) is a solution which tends to 0 as x → +∞, and
normalized by its asymptotics as x → +∞, and f (λ) = y0(0, λ),
then one can show that

ω−1/2f (ω−2λ)− ω1/2f (ω2λ)

f (λ)

is an entire function with the stated poroperty. Here

ω = eπiα, α =
2π

m + 2
.



With few trivial exceptions, zeros and 1-points of entire functions
cannot belong to two distinct lines.

Theorem 2. Suppose that all zeros of an entire function lie on a
line L0, and all 1-points lie on a different line L1 crossing L0. Then
f (z) = eaz+b or f (z) = 1− eaz+b, or a polynomial of degree at
most 2.

Theorem (I. N. Baker, T. Kobayashi) Suppose that all zeros of
an entire function lie on a line L0 and all 1-points lie on a different
line L1 which is parallel to L0. Then f (z) = P(eaz) for some
polynomial P.



Concerning meromorphic functions, we first state a generalization
of Edrei’s theorem whose assumption involves only arguments of
1-points, and the conclusion is that the order is finite:

Theorem 3. Suppose that zeros, poles and 1-points of a
meromorphic function belong to finitely many rays, and on each of
these rays one of the values 0, 1,∞ is omitted. Then the order is
finite and does not exceed π/ω, where ω is the smallest angle
between the adjacent rays.

All previous generalizations of Edrei’s theorem to meromorphic
functions involved an extra condition of the type that the function
or its derivative has some deficient value.



Now we return to the original question, when zeros, poles and
1-points can belong to disjoint rays.

Theorem 4. Let L0, L1, L∞ be three distinct rays from the origin.
Let f be a transcendental meromorphic function with all but
finitely many a-points on La, where a ∈ {0, 1,∞}. Then the rays
must be equally spaced, that is the angle between any two of them
equals 2π/3.

Such functions indeed exist, and they are almost completely
described in the next theorem:



Theorem 5. Let L0, L1, L∞ be equally spaced rays, and f is a
meromorphic function whose a-points lie on La, for a ∈ {0, 1,∞}.
Then f is a solution of the Schwarz differential equation

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= e3θizR(z3),

where θ is the argument of one of the rays, and R is a real rational
function with 0 < R(∞) < +∞.

There is no simple description of rational functions R for which this
differential equation has a meromorphic solution, but it is known
that such rational functions exist with any given number of poles.
We notice that our examples of entire functions with zeros on a
ray and 1-points on two rays distinct from the first also come from
the analytic theory of differential equations.



The simplest example illustrating Theorem 5 is the differential
equation

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= 2z ,

whose solutions are ratios of Airy functions: f = w1/w2, where
w1,w2 are linearly independent solutions of

w ′′ + zw = 0.

These ratios can indeed be chosen so that zeros 1-points and poles
lie on equally spaced raays

{z : arg z = 2πk/3}, k ∈ {0, 1, 2}.



All previous results have no a priori assumption of finiteness of
order. If one makes such an assumption, then another type of
generalization of Biernacki’s theorem is possible, with rays replaced
by sectors.

Theorem 6. Let S0 and S1 be closed sectors of opening angles at
most π, satisfying S0 ∩ S1 = {0}. If f is a transcendental entire
function of finite order whose almost all zeros belong to S0 and
almost all 1-points belong to S1, then

f (z) =

∫ z

0
p(ζ)eq(ζ)dζ + c ,

where p and q are polynomials, and c is a constant.
Notice that such functions f also satisfy Schwarz differential
equations.



The conclusion does not hold if one of the sectors has opening
greater than π. For example, let

f (z) =
∞∏
n=1

(
1− z

an

)
, an > 0, an ∼ n1/ρ,

where ρ ∈ (0, 1). This is an entire function with positive zeros, and
arguments of 1-points accumulate to the directions
arg z = ±π(1− 1/2ρ).



Here are some corollaries:

Corollary 1. Let S0,S2 be closed sectors of opening angles θ0, θ1
and S0 ∩ S1 = {0}. If

min{θ0, θ1} < π/2 and max{θ0, θ1} < π,

then there is no transcendental entire function of finite order with
almost all zeros in S0 and almost all 1-points in S1.

Example.

f (z) =
2√
π

∫ z

0
ζ2 exp(−ζ2)dζ + 1/2

has almost all zeros in {z : |arg z | ≤ π/4} and almost all 1-points
in {z : |arg a− π| ≤ π/4}.



Corollary 2. Let S be a closed sector of opening angle less than
π/3 and H is a closed half-plane such that H ∩ S = {0}. If f is a
transcendental entire function of finite order with almost all zeros
in S and almost all 1-points in H, then f (z) = P(z)eaz , where P is
a polynomial and a ∈ C.

Example.

f (z) =

∫ z

0
(aζ3 + bζ) exp(−ζ3)dζ + 1/3,

for an appropriate choice of a and b has almost all zeros in
{z : |arg z | ≤ π/6} and almost all 1-points in the left half-plane.



To illustrate our principal method, I sketch the proof of a special
case of Corollary 1:

There is no entire function of finite order, except polynomial of
degree 1, whose zeros lie on a ray L and 1-points lie in a closed
sector S of opening < π such that L ∩ S = {0}.

Main idea of the proof. For simlicity we consider only the case
when the order ρ > 0.
Then there exists a sequence 0 < rk → +∞ of Pólya peaks with
the property that

logM(trk) ≤ (1 + ε)tρ logM(rk), ε < r < 1/ε.

Using such a sequence, we define subharmonic functions

uk(z) =
log |f (rkz)|
logM(rk)

, vk(z) =
log |f (rkz)− 1|

logM(rk)
.



These functions are uniformly bounded on compacts, and one can
show that after selecting a subsequence of rk they tend to some
subharmonic limits u and v .
It is easy to see that each of these limits is not identical zero, and
they have the following properties:

a) max{u(z), v(z)} = u+(z) = v+(z) ≤ |z |ρ, z ∈ C,

b) u(0) = v(0) = 0,

c) u is harmonic in C\L and v is harmonic in C\S .

We will show that such functions cannot exist.



Case 1. u is harmonic in C. Then we conclude from a) that ρ is a
positive integer, and

u(z) = crρ cos(ρ(θ − θ0)).

Then a) implies that v = u+, but this v cannot be harmonic
outside a sector of opening < π.

Case 2. u is not harmonic in C.
Then we claim that u(z) < 0 in D := C\S .

Proof of the claim. Suppose first that, if u ≥ 0 in D, then v ≤ u in
D. If v(z0) < u(z0), for some z0 ∈ D\L, then this inequality
persists on an open set since both functions are continuous in
D\L. Then it follows from a) that u = 0 on this open set. But u is
harmonic on a dense subset of C, so we sould have u = 0 which is
a contradiction with a).
If u = v in D, then u is harmonic in C, the case we considered
before.



Suppose now that u(z0) < 0 for some z0 ∈ D but u(z1) > 0.
By upper semi-continuity we have u(z) < 0 in some neighborhood
of z0, thus v(z) = 0 in this neighborhood.
But v is harmonic in D, so we conclude that v(z) = 0 in D by
uniqueness.
So then we have a contradition at the point z1, where we must
have u(z1) = v(z0) by property a).
This shows that u must be negative in D which proves the claim.



The proof is concluded by the following elementary and useful

Lemma. Let u be a subharmonic function in a neighborhood of 0,
and u(0) = 0. Then u cannot be strictly negative in a sector of
opening > π.
Proof. Suppose wlog that the sector is

S = {z : |arg z | < α}, α > π/2.

Then u has a hamonic majorant −crρ cos(ρθ), where ρ = π/(2α)
while in the complement of S it has a harmonic majorant
c1r

ρ
1 cos(ρ1(θ − π). Since

ρ1 = π/(2(π − α)) > ρ,

we obtain that integrals of u over small cirvles are negative, which
contradicts the average property.


