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Abstract. By potential theoretic methods involving the Cartan fine topology a recent result by two of the 
authors is extended as follows: The Riesz charge of the lower envelope of a family of 3 or more &subharmonic 
functions (no longer supposed continuous) in the plane equals the infunum of the charges of the lower 
envelopes of all pairs of functions from the family. As a key to this it is shown in two different ways that 
the (fine) harmonic measures of any 3 pairwise disjoint finely open planar sets have Borel supports with 
empty intersection. One proof of this uses the Jordan curve theorem and the fact that the set of inaccessible 
points of the fine boundary of a fine domain is Borel and has zero harmonic measure; the other involves 
Carleman-Tsuji type estimates together with a fine topology version of a recent result of P. Jones and 
T. Wolff on harmonic measure and Hausdorff dimension. 
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I n t r o d u c t i o n  

Let  w be a 6 - subha rmon ic  funct ion in a d o m a i n  f~ c C, i.e., w = u - v, where the 

funct ions u and  v are  s u b h a r m o n i c  in f~. Then  w is well-defined quas i -everywhere  

(q.c.) in D,, tha t  is: up  to a p o l a r  set, in o ther  words  a set which local ly  has  zero ou te r  

logar i thmic  capaci ty .  The  set of  all t~-subharmonic funct ions in f~ is c losed under  the 

ope ra t ion  of  t ak ing  the lower  envelope ( that  is, the poin twise  min imum)  of  finite sets 

of  such functions.  W e  denote  this ope ra t i on  by  A.  Let/zl-w] denote  the Riesz charge  

assoc ia ted  with a 6 - subha rmon ic  funct ion w in f~. There  is a na tu ra l  o rder ing  on  the 

set of  all  local ly  finite Borel  charges  ( that  is, s igned Borel  measures)  on  D : p  i> v if 

/~ - v is a (nonnegat ive)  measure .  This  re la t ion  induces the least  upper  b o u n d  v #j  

and  the greates t  lower  b o u n d  ^/z~ of  any  finite set of  charges  {/a~}, and  we wri te  

l/a[ = / z  v 0 + ( - / ~ )  v 0. W e  fol low the conven t ion  tha t  p [ w l / >  0 co r re sponds  to 

subharmonic funct ions w. 
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The main goal of this paper is to prove the following theorem (trivial for m = 2): 

THEOREM 1. Let w~,...,wmbe 6-subharmonic functions in a domainD c C,m >1 3. Then 

A 
j=  l l ~ j < k ~ m  

COROLLARY 1. Let for any pair (j, k), j # k, the function wj ^ w k be subharmonic. 
Then the function A 7= 1 wj is subharmonic too. 

Theorem 1 is very useful in the subharmonic approach to the value-distribution 
theory of meromorphic functions, cf. [7], [8]. Theorem 1 follows from Theorems 2 
and 3 below, which appear to have independent interest. In [7] Theorem 1 and 
Corollary 2 were proved for continuous 6-subharmonic functions. For the general 
case, and for Theorems 2 and 3, we need some notions concerning the Cartan fine 
topology and related subjects, cf. [5], [9]. We do not assume that the reader is closely 
familiar with these notions and facts, and we gather them in Section 1. Concepts 
pertaining to the fine topology are marked 'fine(ly)'. If E is a subset of an open set 
[1 c C, the set of all fine limit points of E in ~ is called the base of E (relative to [1) 
and denoted by b(E). 

In Theorem 2, fl denotes a Green set, i.e,, an open subset of C having a Green 
function. For any set E c [~ and any point z e [~ we denote by ~ the swept-out 
measure (relative to [~) of the point-mass ez on E (see Section 1). If E is finely closed 
in f~ and if z ~[~\E, then e~ may be regarded as a (generalized) harmonic measure for 
the finely open set [I\E relative to [~. When speaking of a set of measure 0 for a 
measure v, the set will always be assumed to be v-measurable. 

THEOREM 2. Let fl be a Green set in C; let w be a 6-subharmonic function in fl; let 
# = #[w] denote the Riesz charge of w; and let E denote the base of  {z: w(z)= 0} 
relative to [1. Then I~l(F) = 0 for any set F c E such that eE(F) = 0 for every z ~ D\E, 
or equivalently that e Ez ( F) = 0 for some point z in each fine connectivity component of  D\ E. 

E Because ~z is supported by the fine boundary Of E of E when z e D \ E ,  Theorem 2 
implies, in particular, the known fact that I/~l(intf E) = 0, where intf E = E~0fE denotes 
the fine interior of E, cf. e.g. [5, p. 186]. 

When E is a subset of an open set D c C, a point ~ ~ E is called accessible from 
t)\E if there exists a continuous map p:[0, 1]--*C such that p(t)et~\E for 0 ~< t < 1, 
and p(1) = ~. This notion is clearly independent of [~ (~  E). Taking for F in Theorem 
2 the set E* of points of E which are not accessible from fl\E, we obtain in view of 
Lemma 3 in Section 2 the following corollary. 
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COROLLARY 2. In the notation of  Theorem 2, the set E* of  all points of  E which 
are inaccessible from f~\E is a Borel set, and I/zl(E*) = 0. 

Unlike Theorem 2 itself, Corollary 2 remains valid if E is understood more generally 
to be any subset of f~ which differs from {z:w(z) = 0} only by polar set, except that 
then E* need no longer be Borel, but E* will still be I/~l-measurable with measure 0. 

Like Theorem 1, Corollary 2 has a local nature, and so the assumption that f l  be 
a Green set can be dropped. Actually, Theorem 2 itself likewise remains valid for any 
open set I1 c C, when e~ is replaced by the (generalized) harmonic measure co(f~\E, z) 
for the finely open set t~\E evaluated at z6fJ \E,  see Remark 1 in Section 2. 

THEOREM 3. Let DI, D2, D 3 be three pairwise disjoint, finely open subsets of  a 

Green set f~ c C. The harmonic measures for D1, D2, D 3 have Borel supports S 1, S 2, 

S 3 such that S 1 c~ S 2 c~ S 3 = ~ .  

More precisely, there exist Borel sets S t, S2, S 3 c f~ such that S 1 c~ S2 n S a = O and 
_a\o, for every z 6D i. that, for each i = 1, 2, 3, fl\S~ has measure 0 with respect to gz 

Theorem 3 remains valid when fl is replaced by the entire plane C and e~ a\~ by the 
'full' (generalized) harmonic measure co(D~,z), see Remark 1. Similarly as to 
Lemma 3 (Section 2) and Lemma 4 (Section 6). 

In Sections 3, 4, and 5 we prove Theorems 2, 3, and 1, respectively. A second proof 
of Theorem 3 will be given in Section 6. 

Theorem 2 and its corollary extend immediately to R ~, n i> 3, in place of C, and 
Theorem 2 even extends to suitable harmonic spaces. We do not know whether 
Theorem 1, or equivalently Theorem 3 (cf. [6]), extends to R n, but they do not extend 
to harmonic spaces, as shown in Section 7. 

The authors thank A. Rashkovskii for valuable discussions. The third named author 
thanks the Mathematics Institute, University of Copenhagen, for the opportunity to 
visit Copenhagen in July, 1990. 

1. Preliminaries about the Fine Topology 

The fine topology of classical potential theory in C is defined as the coarsest topology 
on C making every subharmonic function continuous. A well-known theorem of H. 
Cartan states that a set U is a fine neighborhood of a point ~ e U if and only if C U 
is thin (effil6) at ~ in the sense of Brelot, i.e., there should exist a subharmonic function 
v in a neighborhood of ~ such that 

v(() > lim sup v(z). 
z~,z~CV 
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Some connectivity properties of the fine topology will be recalled in the proof of 
Lemma 2 in Section 2. 

We shall now consider potential theoretic notions relative to a fixed open set t~ c C. 
Topological and potential theoretic notions will then be understood relative to f~. 
For instance, the base b(E) of a set E c fl is the set of all points of fl at which E is 
not thin. Equivalently, b(E) is the set of all fine limit points of E in ~ and b(E) is 
therefore finely closed (relative to f~). Moreover, b(E) is a (usual) G6 set; E~ b(E) is 
polar; and b(b(E)) = b(E). Cf., e.g., [5, p. 177]. 

A set e c f~ is polar if and only if b(e) = ~ (i.e., e has only finely isolated points). 
A polar set is finely dosed. Two subsets of ~ which differ only by a polar set have 
the same base. Note that, when w is 6-subharmonic in an open set ~ c C, the set 
E = {z: w(z) = 0} differs only by a polar set from its fine closure F or from its base 
b ( ~  = b(F). 

Now suppose that fl is a Green set, and let G be the Green kernel for t~. For any 
superharmonic function s/> 0 in f~ and any set E = ~ the function R~ defined for z e t~ by 

R~(z) = inf{u(z): u superharmonic >/0 in ~, u >t s in E} 

is called the reduced function of s, and its lower semicontinuous regularizat ion/~ is 
called the swept-out function of s (relative to ~). When s is the Green potential G/z 
of a measure/~ on ~ the swept-out function ~ is the Green potential of a certain 
measure on f~ denoted by/~n and called the swept-out of/~ on E (relative to ~). When 
sweeping a measure on any two subsets of f~ which differ only by a polar set, the 
swept-out measures are the same. 

Let ~, be the Dirac measure at a point z e ~. The following identity holds for any 
measure # on ~ such that G/~ is superharmonic in ~ any set E = ~ and any Borel 
set B c t~: 

IgE(B) = fa  e~(B)p(dz) (1.1) 

(cf. [5, p. 160]). By linearity one can extend the definition of the sweeping operation 
so as to apply to charges # on fl (always such that GI#I is superharmonic, i.e., GI#I ~ oo 
in every component of ~). 

IfD is a finely open set and E = f~\D, the generalized Green function for D with pole at zis 

E G~ ", z) = G(', z) - G e [  = Ge z - ~ . (1.2) 

This function G~ �9 , z) is non-negative, subharmonic in [l\{z}, and its Riesz measure 
n for D relative to ~. We have G~ ., z) 0 (on fl\{z}) is the harmonic measure e: = 

quasi-everywhere in E (and everywhere in E if E is a base). Further properties of 
G~ �9 , z) considered in D are given in [10]. 



6-SUBHARMONIC FUNCTIONS 195 

REMARK 1. The 'full' (generalized) harmonic measure for a finely open set D c C 
evaluated at a point z e D may be defined as a measure on C as follows. If [D is polar, 
we set a~(D, z) = 0. Now suppose that if) is not polar (hence not even inner polar, by 
Choquet's capacitability theorem). By Myrberg's theorem there then exist Green sets 
f~ = D in C. It can be shown that the (generalized) Green function GD( �9 , z), defined 
in D relatively to such a Green set ~ by (1.2) above, is independent of the choice of 
ft. Moreover, Ga( ., z) has a unique extension to all of C such that GD( ., z) is 
subharmonic in C\{z} and equal to 0 q.e. in C\D (and more precisely GD( -, z) = 0 
everywhere in b(C\D)). The Riesz measure of this subharmonic extension of GD( �9 , z) 
from D\{z} to C\{z} will be called simply the harmonic measure for D at z, and we 
denote it by aJ(D, z). The measure ~ D ,  z) is carded by the fine boundary OlD of D, 
and even by the fine boundary of the fine component of z in D. It can be shown that 
a~(D, z) has total mass 1 and does not charge the polar sets. The trace of oJ(D, z) on 
any Green set fl ~ D in C is e~ \~ (sweeping relative to fl). In case of, say, a bounded, 

_a\D for any z ~ D and any Green finely open set D c C we therefore have co(D, z) = ~ 
set fl in C containing the fine closure of D in C. For a usual open set D c C, co(D, z) 
equals the usual harmonic measure for D at z. - An alternative characterization of 
the harmonic measure co(D, z) for a finely open set D of non-polar complement is 
obtained by solving the fine Dirichlet problem for a bounded and finely continuous 

a 
function ~b on afD. The solution H ,  is the unique bounded, fne ly  harmonic function 
in D which has the fine limit ~b(y) q.e. for y e d~,D (namely for every y E (Of D ) n  b(~)). 
It can be shown that 

H~(z) = f # do~(D, z), zED.  

In the case where D is bounded, this is contained in [9, w - In the rest of the 
paper we shall not draw on the present remark since most of its content has not been 
published, and we shall therefore again refer to suitable Green sets in C; this will 
cause no real loss of generality. 

2. Auxiliary Results 

For the proof of Theorem 2 we need the following lemma. 

LEMMA 1. For i = 1, 2 let [1 i be a Green set in C, let Ei c fl  i be finely closed relatively 
to tl~, and let D O be an open subset o f t  1 c~ D 2 such that 

E 1 n f~o = E2 n [2 o. 

For any Borel set B c f~o we then have the bi-implication 

nle~'(B) = 0 for all zEfJ l \El , :~  a2e~2(B) = 0 for all zE[12\E 2. 
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Here the left superscript f~i, i = 1, 2, indicates sweeping relative to fli. Using results 
about  the fine Dirichlet problem [9, w this lemma can be proved in a similar way 
as in the well-known special case where E t is relatively closed in fl~, i = 1, 2, in the 
usual topology. We omit the details because Lemma 1 only enters effectively in the 
reduction of Theorem 2 to the case where w is the Green potential of a charge, and 
Theorem 1 easily reduces to the case of such potentials (even equal to 0 outside some 
disk, if we like). 

In our first proof of Theorem 3 we use the following consequence of the famous 
puzzle about three houses and three wells. 

L E M M A  2. Let D1, D2, D3 be pairwise disjoint, finely open sets in C. Then the set 
X of points of C accessible from D1, D2, D 3 simultaneously is at most countable. 

In fact, if D1, D2, D 3 are moreover finely connected, or equivalently pathwise (even 
polygonally) connected [12, p. 113], then there are at most 2 points simultaneously 
accessible from these three fine domains. This is nothing but Euler's puzzle - an easy 
consequence of the Jordan curve theorem, cf. Whyburn [18, p. 316] or [7]. The 
general case follows because the fine topology is locally connected, cf. [9, p. 92], and 
a finely open set has at most countably many fine components; furthermore, a path 
in C contained in a finely open set D is contained in one of the fine components of 
D (because the union of those fine components of D which meet the path is pathwise 
connected, hence also finely connected in the present, planar case). 

The following lemma enters in the proof of Corollary 2 and in the first proof of 
Theorem 3. 

LEMMA 3. Let [~ be a Green set in C, and let E be a relatively finely closed subset 
of ~. The set E* of all points of E which are inaccessible fiom [~\ E is then a Borel set, and 

~(E*) = 0, zEf~\E. 

Proof. To prove that E* is a Borel set (in the usual sense) we adapt the proof given 
by Mazurkiewicz [16] for the case of a usual compact set E c C. For this adaptation 
we use once more the connectivity properties of the fine topology on C mentioned 
after Lcmma 2 above. 

The open set ~ c C is a Polish space in the sense of [2, ~6]. Accordingly, let p 
denote a metric on fl inducing the standard topology on ~ and such that the metric 
space ([l, p) is complete, necessarily with a countable base (~n)n~N of open sets. 
Replacing p by rain{l, p}, we may arrange that p ~< 1. 

Following [16] we introduce on D := f~\E a new metric p* defined by 

p*(x, y) = inf{diamL:L~.~(x, y)}, x ,y~D, 
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where .~(x, y) denotes the set of all (ranges of continuous) paths L in (D, p) leading 
from x to y, and diam L denotes the diameter of L with respect to p. (If ~ (x ,  y) = ~ ,  
define p*(x, y) = 1.) 

Let/~ = (/~, p*) denote the completion of (O, p*). The complete metric space (/5, p*) 
is a Polish space because it is separable. In fact, a countable dense subset of (D, p*) 
and hence of(/~, p*) can be obtained as X = g , ~ s  x ,  where, for each n ~ N, X,  consists 
of one point from each fine component of the finely open set D n t2,. This uses the 
pathwise connectedness of fine domains in C. 

The identity map (D, p*)--} (D, p) c (O, p) is contractive and hence extends uniquely 
to a contraction 

p*)---}(fl, p). 

It is easy to see that every point of D~D is accessible from D (in the topology defined 
by p*), and further that 

= 

which shows that E* is the complement within f~ of the Souslin set ~b(D'). In particular, 
E* is universally measurable, and this is really all that matters in the applications of 
Lemma 3 in the present paper. 

To show that ~(/~) and hence E* are even Borel sets, one proceeds like in [16]. 
The main step is to show that the set Z of points z ~ p ( ~  for which the pre-image 
~b-l(z) has 3 or more points is at most countable; for this one uses Lemma 2 above 
and the fine connectivity properties listed after it, cf. the analogous step in [161. Next, 
D~ ~b-I(Z) is a G6 in the Polish space (/~, p*), hence itself a Polish space. Because 
is at most countable-to-one (even 2-to-l) on D~ ~b-I(Z), the image ~p(D')\Z is not only 
analytic, but a Borel set in fl, and so are therefore ~ and E* = ~ \  ~(fi), by a 
well-known theorem, see e.g. [3, Theorem 5.17]. 

For the last assertion of Lemma 3 we use that, for any Borel set B c E and any 
point z e D (=  t2\E), e~(B) equals the probability that a Brownian particle in O., starting 
at z, eventually hits E, and finds itself in B the first time it hits E, cf. [1, p. 264]. 
When applied to B = E* (the points of which are never hit) this shows that indeed 

= 0 .  

R E M A R K  2. Lemma 3 extends to R" (in place of C) except that E* need then no 
longer be a Borel set (according to known examples with E a usual closed set in R3), 
but E* is still the complement within f~ of the Souslin set ~b(D'), and in particular E* 
remains universally measurable. This appears from the first part of the above proof. 
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3. P r o o f  o f  T h e o r e m  2 

Write D = f~\E and let D, denote the nth fine connectivity component of the finely 
open set D. Suppose that F c E and that, for each n in question, e~,(F) = 0 for some 
zneD ,. Then t~(F) = 0 for every zeD, see [-9, p. 150]. In proving that I#l(F) = 0 we 
may assume that F is contained in a given disk f~o with closure in fl. Choose a Borel 
set A n so that F ~ A n ~ E c T F ~  o and e~,(An)=0, and write A =  NnAn. Then 
F ~ A c E n [~o, and it remains to prove that #(B) = 0 for every Borel set B ,- A. 
Clearly, e~,(B) = 0 and hence, as above, 

e~(B) = 0 for every zeD. (3.1) 

For  the proof that #(B) = 0 we consider first the case where w = -G/~ for some 

charge # on s (with Gl#l superharmonic); then #[w] = #. It is known that ef is 
supported by b(E) = E; and that e~ does not charge the polar sets, except if z e E, in 
which case e~ = e~; cf. [5, p. 161, 183]. Because G# = 0 q.e. in E we therefore have 

G#Z(z) = f G# de~ = 0 

cf. [5, p. 160]. It follows that 

We now decompose 

q.e. for z e s 

# = 2 + v, (3.3) 

where 2 = #]E, v = #[a- Then ;t r = 2 since A is supported by E = b(E), cf. [5, p. 183]. 
In view of (3.2), sweeping on E therefore leads to 

#~ = 2 + v r = 0. (3.4) 

Using (1.1) and (3.1) we obtain 

rE(B) = f D ~ ( B ) ~ ( d z )  = 0. 

By (3.4) we thus get ~(B) = 0, and we conclude from (3.3) that 

~ )  = v(B) = 0 

because B ~ A c E and v is supported by D. 
In case of a general ~-subharmonic function w in f~ we choose a disk f l l  so that 

t3 o c f~l, t~l c f2. Writing w - u - v with u, v superharmonic in ~ hence lower 
bounded in i l l ,  we may assume that u, v > 0 in f~t. Now replace f~ by f~  and u, v 
by their swept-out functions on f~o relative to i l l ,  which are Green potentials of 

#r = 0. (3.2) 
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measures on fl  1. These substitutions cause no change in the restrictions of u, v, and 
w to f~o, and therefore no change in the trace of # = #[w] on flo. It follows that 
E c~ f~o ( = B) and ~B) do not change. Moreover, we infer from Lemma 1 (taking 
f12 = ~, E2 = E, E: = E c~ fl l  there) that the Borel subsets of fl  o of ~-measure 0 for 

fll El all z ~ \ E  do not change, and so e~ (B)= O for every ZE~I \E 1. Consequently, 
~B) = 0 by the above proof for the case where w = - G#. 

4. Firs t  Proof of Theorem 3 

For brevity write E t = b(f~\Di) (relative to t~), and denote by ~ = E~\E* the set of 
points of E t which are accessible from IE i (or equivalently from ~\Et). By Lemma 3, 
E~ is a Borel set because the base E t is a Borel set. The finely open sets 

/~ i :=  ~\Ei, i = 1,2,3, 

are pairwise disjoint because b(Al u A2) = b(A1) u b(A2) for any two sets AI ,  A 2 c f~. 

When applied to these three sets/3~, Lemma 2 shows that 

is countable, in particular polar. Now take 

S t = E~\X,  

that is, the set of all points of Et = f~\/3t which are accessible from/3t, but not from 
all three sets/3 a,/32,/33 simultaneously. When z ~/3t, in particular when z E D t, the 

_a\D, does not charge the polar sets, and it is supported by the Borel measure e~' = ~z 
set E~ according to Lemma 3, and consequently also by St, which is likewise Borel. 

Theorem 3 is proved. A different proof (without the use of accessible points and 
Brownian motion) will be given in Section 6 below. 

5. Proof of Theorem 1 

Because the theorem has a local nature we may suppose that fl is a Green domain, 
e.g., a disk (and also, if we like, that each w t is the Green potential of a charge). We 
begin with the case m = 3 and write 

wt= A w,, w= A w,, 
j#i I~j~3 

Et = b({z:wt(z) >1 w*(z)}), Ot = fl\Et; i = 1,2,3, 

the bases being taken relative to f~. The sets D i are finely open, usual/7o sets, and 
they are pairwise disjoint, cf. the beginning of the preceding proof. Clearly, 
{z:wi(z) >1 w*(z)} = {z:w(z) = w*(z)}, and so 
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e ,  = b~{z: wtz) = w*(z)}). (5.1) 

With the above notations the conclusion of Theorem 1 reads 

for every Borel set B c fL Let St, S2, S3 be Borel sets with the properties stated in 
Theorem 3. Writing F~ = f~\S~ we decompose ~ = F t u F 2 u F 3 into 3 pairwise 
disjoint Borel sets F'~ c F~. Then ~f'(F'~) = 0 for z~D~, i = 1,2,3. The given Borel set 
B decomposes into its parts in the 6 pairwise disjoint Borel sets E~ n F'~ and D~ c~ F'~; 
and it suffices therefore to prove (5.2) for any Borel set B contained in one of these 
6 sets. We do this by applying Theorem 2 to the function w - w* and the base E~, 
i = 1, 2, 3, cf. (5.1). If B c E~ n F'~ for some i then ef'(B) = 0 for z s D~, and hence 

uEw] (B) = t~Ew* 1(8), 

from which (5.2) follows. Suppose instead that for example B c D ~ c~ F'a. Then B is 
contained in the fine interior of E2, because D~ is finely open and contained in 
D\D 2 = E 2. As explained after Theorem 2 it follows that #[w](B) = #[w*](B), and 
(5.2) ensues. 

This establishes Theorem 1 in the ease m = 3. The general ease m/> 3 follows by 
induction: 

#Ew~ A ... A w,,]  : # E ( w ~  A ... A w, ,_~)  A w,,_~ A w,,]  

I> #[wl A ... A w,,_~ A w,_~l  A #[w~ A ... A w,,_ 2 A w,,] 

A U[w._~ A W.] >I A u[w~ ̂  w~]. 
l<<.j<k~m 

6. Second Proof of Theorem 3 

We may suppose that fl \Dj is a base. (Otherwise replace Dj by ~ = fl\b(fl\Dj), and 
note that the finely open sets/~1,/)2,/~3 are again pairwise disjoint, as in the first 
proof of Theorem 3; and ^a\t~j _a\D~, ~z = ~, 4 Recall that Dj has at most eountably many 
fine connectivity components, and if C i denotes any one of them then e, n\Dj = e~ n\c~ 
for every z~Cj, [9, p. 1551. In view of these circumstances it is enough to prove 
Theorem 3 in the case where D1, D2, D 3 are finely connected. Also recall that the 
sets of measure 0 with respect to e n\Dj are then the same for all zeD~, [9, p. 1501. 

Fix arbitrary points ~ e  Dj and put #~ = e~\a~ (sweeping relative to fl). It is sufficient 
to prove that the measures #~ have supports with empty intersection, and this is 
equivalent to 

V:---- ~1 A ~2 A /.13 ----- 0.  (6.1) 
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Let us denote by u i = G DJ (.,  (j) the generalized Green function for D r with pole at 
(j, cf. (1.2). Then uj is a non-negative function, subharmonic in f~\{(i}, and its Riesz 
measure is #1" Furthermore, u I = 0 in Ej. 

For z o e C and t > 0 we denote by Oi(z o, t) the Lebesgue measure of the set 
{Or o + tei~162 We have 

01(z o, t) + 02(Zo, t) + Oa(z o, t) ~< 2n. (6.2) 

Recall that #j is supported by the fine boundary OIDj, cf. [5, p. 186]. Fix z o E N1 asDJ 
and ro > 0 so that ro < minj[zo - ~jl, and write 

Oj(Zo, r) = fro 
dt 

tOi(z o, t)' r < r o. 

Each circle Iz - Zo[ = t o f  radius  t ~< r o meets flgj for everyj = 1, 2, 3. (In fact, ID i ~ D k 
for k # j, and D k is finely connected, in particular connected in the usual topology; 
and because Zo~O~.D t c dDk, D k contains points z with [z - zol < t as well as the 
point ~k with I~k -- zol > ro/> t.) In view of this the well-known estimate of Carleman 
(cf. [14] combined with the proof of a related estimate of harmonic measure due to 
Tsuji [17, Theorem III.67 and Corollary, p. 116])implies 

uj(zo + 2 ei~ <~ Cexp(-rcO~(Zo, r)), (6.3) 

where C is independent of r < r o and 0. (An alternative proof of (6.3) is described in 
Remark 3 below.) 

Write D(a, r) = {z: Iz - al ~< r}. Combining (6.3) with the Jensen inequality we get 
for r < r o 

1 2x 

<~2-~fo ui (z~176 dO 

~< C e x p ( -  nOj(Zo, r)). (6.4) 

Using the Schwarz inequality and (6.2) we obtain 

3(lnro-lnr)2= ~ ( f f~176  2 
j=l   /Oj(zo, t) 

ff ~ t dt f/~ dt <<- ~=~ Oj(zo, ) t tOj(zo, t) 

~< 2:t(ln r o - In r) max Oj(Zo, r), 
J 
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s o  

max O~(Zo, r) > / 3  (ln r o - In r). 
J 

Together with (6.4) this implies 

v(D(z o, r)) ~ min #j(D(zo, r)) = O(r a/2), 
J 

Now we use the following 

r ~ 0 .  (6.5) 

LEMMA 4. For an arbitrary finely open subset D of a Green set [1 c C the measure 
# = et~ \a, ~ e D, has a Borel support of  Hausdorff dimension at most 1. 

For usual domains this result is due to P. Jones and T. Wolff [15]. Let us derive the 
required generalization. Denote by u = GD( ", 0 the generalized Green function for 
D with pole at (, cf. (1.2). Write E = D\D, and let F.  c E be a sequence of compacts 
such that Z. g(F.) = #(E) (=  g(D)). Consider the Green function u. for the open set 
~ \ F .  with the same pole ( as u. We have u./> u, and u.  = u quasi-everywhere on F~, 
so by a theorem of Grishin [13] the Riesz measure of u n majorizes the Riesz measure 
of u on Fn. By the Jones-Wolff  theorem the Riesz measure of u n has a Borel support 
of Hausdorff dimension ~< 1. It follows that the restriction of # to each F.  has a Borel 
support of Hausdorff dimension ~< 1, and so has therefore # itself. 

Let us now complete the proof of the theorem. By Lemma 4 the measure v defined 
in (6.1) has a Borel support S ~ Nj~IDj  such that d i m s  ~< 1. Also v satisfies (6.5) at 
each point z o ~ S. If v(S) > 0 then by Egorov's theorem (applied e.g. to the sequence 
of functions (r.)-s/%(D(z, r.)) on S, with r. = 2-"ro) there exist a set S' c S with 
v(S') > v(S)/2 and a number R > 0 such that 

v(D(z, r)) ~ r 514, r < R, z e S'. (6.6) 

It follows from the definition of the Hausdorff dimension that, given any 6 > 0, there 
exists a covering of S' by disks A. of radii r. < R such that Y~ _5/4 , .  < & We may suppose 
that the centers of these disks he on S'. So by (6.6) 

�89 < v(S') <~ ~v(A,)  ~< ~r~/* < 6, 
n n 

and it follows that v(S) = O, which proves (6.1) and the theorem. 

REMARK 3. Alternatively, the proof of (6.3) outlined above could be replaced by 
an extension of the quoted corollary in [17, p. 116] to the case of fine domains D c f~. 
(D in [17] corresponds to D~ in the above proof.) This extension is based on an 
approximation theorem due to Choquet [4, p. 91] applied to the set X = f~\D, which 
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is thin at each point of the fine domain D. Thus there exists a decreasing sequence 
of usual domains D {n) with D c Dtn) c f~ such that the capacity of Dt')\ D with respect 
to the Green kernel G for f~ tends to 0 as n--~ oo. It follows that the two sets N , D  t-~ 
and D differ only by a polar set and hence have the same intersection with the circle 
Izl = t for almost every t. (The center 0 of these circles corresponds to z o above.) It 
remains only to apply the monotone convergence theorem in order to prove the 
desired extension of the estimate of harmonic measure given in [17, p. 116] to the 
case of a fine domain D, noting that the relevant evaluation of harmonic measure 
(denoted by u,(z) in [17]) does not decrease when D is replaced by D t~) ~ D. Finally, 
(6.3) above is a straightforward consequence of this estimate, applied to D = D r. 

7. An Example from Axiomatic Potential Theory 

We give an example of a Brelot harmonic space satisfying the axiom of domination 
and having a Green function, and such that Theorems 1 and 3 do not hold. The 
example is due to A. Cornea (unpublished) who devised it for a different purpose, 
see [11, p. 184 f.]. In this example all subharmonic functions are finite and continuous, 
and so the fine topology coincides with the initial topology, and no point forms a 
polar set. There is, however, an analogous n-dimensional example (for any n ~> 2) in 
which the two topologies are distinct and all points are polar. 

The underlying space fl in Cornea's example is the union of 3 copies f11, fl 2, fl 3 
of the interval [0, 1) such that any two of these copies are considered to be disjoint, 
except that the end-points 0 in all three copies are identified so as to form a single 
point of ~ denoted by 0". The topology on gl is defined so as to agree with the 
standard topology on each interval fit; hence fl is locally compact. 

A function f defined in an open subset co of fl is called harmonic if, for each j = 1, 
2, 3, the restriction f~ of f to each interval forming a component of co c~ fl~ is affine, 
and if, moreover, f~(0) + f~(0) + f~(0) = 0 in case 0* e co. With this sheaf of harmonic 
functions, f l  becomes a Brelot harmonic space with a Green function. A function f 
on l l  is subharmonic if and only if, for each j = 1, 2, 3, the restriction f~ of f to f~j is 
continuous and convex, and if moreover f~(0) + f~(0) + f3(0) 1> 0. 

Let e denote the Dirac measure on f~ at the point 0". The Green function 
Ge = G(., 0") (suitably normalized) has the following restriction (Ge)j to f~j: 

(Ge)j(t) = �89 - t), 0 ~< t < 1. 

Now consider the following three superharmonic functions w i on O,, j = 1, 2, 3: 

w~={ot on f~ 
on fl\  f~. 

Simple calculations lead to the following Riesz charges: 



204 ALEXANDRE EREMENKO ET AL. 

~C%] = - 8 ,  
/~[% ^ wk] = -28 ,  j ~ k, 

/~[wl ^ w2 ^ w3] = - 3 e .  

The conclusion in Theorem 1 would thus read - 3 e / >  - 2 e ,  which is false. 
Theorem 3 breaks down when we take D i = [li\{O* }. In fact, for z e D  i, ~:'a\D' is 

supported by the boundary {0"} of D~, and e~aw'({0*}) > 0 because {0"} is non-polar. 
Consequently, any three supports $1, S 2, $3 as in Theorem 3 would have 0* in common. 
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