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These facts of the combinations of rotations, and what they
produce, are hard to grasp intuitively. It is rather strange,
because we live in three dimensions, but it is hard for us to
appreciate what happens if we turn this way and then that way.
Perhaps, if we were fish or birds and had a real appreciation of
what happens when we turn somersaults in space, we could more
easily appreciate these things.

Feynman’s lectures on physics, vol. 3, 6.5.

O(3) pervades all the essential properties of the physical world.
But we remain intellectually blind to this symmetry, even if we
encounter it frequently and use it in everyday life, for instance
when we experience or engender mechanical movements, such as
walking. This is due in part to the non commutativity of O(3),
which is difficult to grasp.

M. Gromov, Notices AMS, 45, 846-847.

Rotations in 3-space are more complicated than rotations in a plane. One
reason for this is that rotations in 3-space in general do not commute. (Give
an example!)

We consider rotations with fixed center which we place at the origin. Then
rotations are linear transformations of the space represented by orthogonal
matrices with determinant 1.

Orthogonality means that all distances and angles are preserved. The
determinant of an orthogonal matrix is always 1 or -1. (Think why.) The
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condition that determinant equals 1 means that orientation is preserved. An
orthogonal transformation with determinant -1 will map a right shoe onto
a left shoe; such orthogonal transformations are called sometimes improper
rotations, we cannot actually perform them on real objects. (No matter how
you rotate a left shoe it will never become a right shoe).

We begin with simple properties of rotations in 3-space.

Theorem 1. Let A ̸= I be a 3× 3 rotation matrix. Then 1 is an eigenvalue
of A. Two other eigenvalues are either both equal to −1 or they are distinct
complex conjugate numbers of absolute value 1.

The first statement means that there is a vector x ̸= 0 which remains
fixed, Ax = x. So each vector of the one-dimensional subspace spanned by
this x remains fixed, that is every rotation has an axis. This is not so in
dimension 2. A (non-identiry) rotation in dimension 2 displaces every non-
zero vector. Give an example of rotation in dimension 4 which displaces
every non-zero vector. It is of crucial importance that our space has an odd
dimension.

Exercise: give an example of rotation in dimension 4 which moves every
non-zero vector.

Proof of Theorem 1. First notice that all eigenvalues of an orthogonal
matrix have absolute value 1. Indeed,

Ax = λx, ∥x∥2 = (x, x) = (Ax,Ax) = |λ|2(x, x) = |λ|2∥x∥2,

and x ̸= 0, so |λ| = 1.
As the matrix is real, its non-real eigenvalues come in conjugate pairs.
Now the characteristic equation p(λ) = det(A − λI) = 0 has degree 3,

and p(λ) = −λ3 + . . .. As p(0) = detA = 1, the graph of p(λ) has to cross
the λ-axis at some positive value, so we have at least one positive eigenvalue
λ1. As |λ1| = 1 we conclude that λ1 = 1. 2

The plane P perpendicular to the axis of rotation is invariant (because the
rotation preserves all angles). It follows that the restriction of our rotation
to this plane P is a rotation of P . So a rotation is completely characterized
by two pieces of data: the direction of the axis of rotation and the angle of
rotation about this axis.

It is convenient to combine these data into one vector whose direction
specifies the axis and the whose length equals to the angle of rotation. So
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the angle of rotation is always between 0 and π, and the direction of the
vector along the axis is chosen in such a way that it makes the “right screw”
with the rotation. We denote by g(a) the rotation that corresponds to the
vector a, ∥a∥ ≤ π.

Notice that the correspondence a 7→ g(a) is not one-to-one: if ∥a∥ = π
then g(a) = g(−a).

Given the axis and the angle of a rotation, how to write the matrix of
this rotation?

To answer this question, let us consider all skew symmetric 3×3 matrices,
which we will write in the form

A(a) = a1A1 + a2A2 + a3A3,

where a = (a1, a2, a3),

A(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 = a1A1 + a2A2 + a3A3,

and

A1 =

 0 0 0
0 0 −1
0 1 0

 , A2 =

 0 0 1
0 0 0

−1 0 0

 , A3 =

 0 −1 0
1 0 0
0 0 0

 ,

so that A1, A2 and A3 form a basis in the space of all 3× 3 skew-symmetric
matrices, and a1, a2, a3 are the coordinates of a skew symmetric matrix A(a)
with respect to this basis.

Exercise: verify that A1, A2 and A3 satisfy the relations

A1A2 − A2A1 = A3

A2A3 − A3A2 = A1

A3A1 − A1A3 = A2.
.

The expressions in the left hand side are called commutators, in general,
the commutator of two matrices A and B is defined by [A,B] = AB −BA.

Exercise: verify that for every two vectors a and b, we have [A(a), A(b)] =
A(a× b), where a× b is the cross product.

So the rules of multiplication of matrices A(a) are the same as the rules
of cross multiplication of vectors a.
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Let us compute the exponent exp(A3t). One can do this in the usual way,
by finding the eigenvalues and eigenvectors, but in this particular case it is
easier to apply the definition directly. Indeed, we have (verify!)

A2
3 =

 −1 0 0
0 −1 0
0 0 0

 = −I ′, A3
3 = −A3, A4

3 = I ′,

and so on. So, using the definition of the exponential, and grouping the even
and odd terms, we obtain

eαA3 =
∞∑
n=0

αnAn
3

n!
= I + I ′

∞∑
k=1

(−1)kα2k

(2k)!
+ A3

∞∑
k=1

(−1)k−1α2k−1

(2k − 1)!
=

= I + I ′(cosα− 1) + A3 sinα,

that is

eαA3 =

 cosα − sinα 0
sinα cosα 0

0 0 1

 . (1)

Thus exp(αA3) is a rotation about z-axis by the angle α. Similarly you can
verify that exp(αA1) and exp(αA2) are rotations by the angle α about the
x and y axes, respectively. The axes are supposed to be oriented in their
positive directions. Check that the right screw rule is observed!

Now we can establish our main result:

Theorem 2. Rotation corresponding to the vector a = (a1, a2, a3) is given
by the formula

g(a) = exp(a1A1 + a2A2 + a3A3). (2)

Proof. Let g(a) be the rotation corresponding to the vector a = (a1, a2, a3).
When two of the coordinates of a equal zero, we have an explicit formula for
g(a), for example, if a1 = a2 = 0, this is a rotation about z axis, so it is
given by (1) with α = a3. The formulas for the other two axes are similar.
Differentiating these formulas we obtain

∂g(a)

∂a1
|a=0 =

∂g(a1, 0, 0)

∂a1
|a1=0 =

∂

∂a1
ea1A1 |a1=0 = A1, (3)
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and similarly
∂g(a)

∂a2
|a=0 = A2,

∂g(a)

∂a3
|a=0 = A3. (4)

Now, let n = (n1, n2, n3) be a unit vector in some direction, then g(nα) and
g(nβ) are rotations about the same axis by angles α and β respectively, so
evidently we have

g(n(α + β)) = g(nα)g(nβ).

Differentiating this identity with respect to β, then setting β = 0 and using
the above relations (3) and (4), we obtain

d

dα
g(nα) = (n1A1 + n2A2 + n3A3)g(nα).

On the other hand, if we denote the right hand side of (2) by f(a1, a2, a3),
and put a = (a1, a2, a3) = nα, then the differentiation with respect to α gives

d

dα
f(nα) = (n1A1 + n2A2 + n3A3)f(nα).

Thus f(nα) and g(nα) satisfy the same differential equation and the same
initial condition (namely, g(n0) = f(n0) = I), and we conclude from the
uniqueness theorem for differential equations that g = f . This completes the
proof.
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