Rotations in 3-space

A. Eremenko

March 13, 2020

Abstract

These facts of the combinations of rotations, and what they produce, are hard to grasp intuitively. It is rather strange, because we live in three dimensions, but it is hard for us to appreciate what happens if we turn this way and then that way. Perhaps, if we were fish or birds and had a real appreciation of what happens when we turn somersaults in space, we could more easily appreciate these things.

Feynman's lectures on physics, vol. 3, 6.5.
$O(3)$ pervades all the essential properties of the physical world. But we remain intellectually blind to this symmetry, even if we encounter it frequently and use it in everyday life, for instance when we experience or engender mechanical movements, such as walking. This is due in part to the non commutativity of $O(3)$, which is difficult to grasp.
M. Gromov, Notices AMS, 45, 846-847.

Rotations in 3-space are more complicated than rotations in a plane. One reason for this is that rotations in 3 -space in general do not commute. (Give an example!)

We consider rotations with fixed center which we place at the origin. Then rotations are linear transformations of the space represented by orthogonal matrices with determinant 1 .

Orthogonality means that all distances and angles are preserved. The determinant of an orthogonal matrix is always 1 or -1 . (Think why.) The
condition that determinant equals 1 means that orientation is preserved. An orthogonal transformation with determinant -1 will map a right shoe onto a left shoe; such orthogonal transformations are called sometimes improper rotations, we cannot actually perform them on real objects. (No matter how you rotate a left shoe it will never become a right shoe).

We begin with simple properties of rotations in 3 -space.
Theorem 1. Let $A \neq I$ be a 3×3 rotation matrix. Then 1 is an eigenvalue of A. Two other eigenvalues are either both equal to -1 or they are distinct complex conjugate numbers of absolute value 1 .

The first statement means that there is a vector $x \neq 0$ which remains fixed, $A x=x$. So each vector of the one-dimensional subspace spanned by this x remains fixed, that is every rotation has an axis. This is not so in dimension 2. A (non-identity) rotation in dimension 2 displaces every nonzero vector. It is of crucial importance that our space has an odd dimension.

Exercise: give an example of rotation in dimension 4 which moves every non-zero vector.

Proof of Theorem 1. First notice that all eigenvalues of an orthogonal matrix have absolute value 1. Indeed,

$$
A x=\lambda x, \quad\|x\|^{2}=(x, x)=(A x, A x)=|\lambda|^{2}(x, x)=|\lambda|^{2}\|x\|^{2},
$$

and $x \neq 0$, so $|\lambda|=1$.
As the matrix is real, its non-real eigenvalues come in conjugate pairs.
Now the characteristic equation $p(\lambda)=\operatorname{det}(A-\lambda I)=0$ has degree 3, and $p(\lambda)=-\lambda^{3}+\ldots$ As $p(0)=\operatorname{det} A=1$, the graph of $p(\lambda)$ has to cross the λ-axis at some positive value, so we have at least one positive eigenvalue λ_{1}. As $\left|\lambda_{1}\right|=1$ we conclude that $\lambda_{1}=1$.

The plane P perpendicular to the axis of rotation is invariant (because the rotation preserves all angles). It follows that the restriction of our rotation to this plane P is a rotation of P. So a rotation is completely characterized by two pieces of data: the direction of the axis of rotation and the angle of rotation about this axis.

It is convenient to combine these data into one vector whose direction specifies the axis and the whose length equals to the angle of rotation. So the angle of rotation is always between 0 and π, and the direction of the
vector along the axis is chosen in such a way that it makes the "right screw" with the rotation. We denote by $g(a)$ the rotation that corresponds to the vector $a,\|a\| \leq \pi$.

Notice that the correspondence $a \mapsto g(a)$ is not one-to-one: if $\|a\|=\pi$ then $g(a)=g(-a)$.

Given the axis and the angle of a rotation, how to write the matrix of this rotation?

To answer this question, let us consider all skew symmetric 3×3 matrices, which we will write in the form

$$
A(a)=a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3}
$$

where $a=\left(a_{1}, a_{2}, a_{3}\right)$,

$$
A(a)=\left(\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right)=a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3}
$$

and

$$
A_{1}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so that A_{1}, A_{2} and A_{3} form a basis in the space of all 3×3 skew-symmetric matrices, and a_{1}, a_{2}, a_{3} are the coordinates of a skew symmetric matrix $A(a)$ with respect to this basis.

Exercise: verify that A_{1}, A_{2} and A_{3} satisfy the relations

$$
\begin{aligned}
& A_{1} A_{2}-A_{2} A_{1}=A_{3} \\
& A_{2} A_{3}-A_{3} A_{2}=A_{1} . \\
& A_{3} A_{1}-A_{1} A_{3}=A_{2} .
\end{aligned}
$$

The expressions in the left hand side are called commutators, in general, the commutator of two matrices A and B is defined by $[A, B]=A B-B A$.

Exercise: verify that for every two vectors a and b, we have $[A(a), A(b)]=$ $A(a \times b)$, where $a \times b$ is the cross product.

So the rules of multiplication of matrices $A(a)$ are the same as the rules of cross multiplication of vectors a.

Let us compute the exponent $\exp \left(A_{3} t\right)$. One can do this in the usual way, by finding the eigenvalues and eigenvectors, but in this particular case it is easier to apply the definition directly. Indeed, we have (verify!)

$$
A_{3}^{2}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)=-I^{\prime}, \quad A_{3}^{3}=-A_{3}, \quad A_{3}^{4}=I^{\prime},
$$

and so on. So, using the definition of the exponential, and grouping the even and odd terms, we obtain

$$
\begin{aligned}
e^{\alpha A_{3}}=\sum_{n=0}^{\infty} \frac{\alpha^{n} A_{3}^{n}}{n!} & =I+I^{\prime} \sum_{k=1}^{\infty} \frac{(-1)^{k} \alpha^{2 k}}{(2 k)!}+A_{3} \sum_{k=1}^{\infty} \frac{(-1)^{k-1} \alpha^{2 k-1}}{(2 k-1)!}= \\
& =I+I^{\prime}(\cos \alpha-1)+A_{3} \sin \alpha
\end{aligned}
$$

that is

$$
e^{\alpha A_{3}}=\left(\begin{array}{rrr}
\cos \alpha & -\sin \alpha & 0 \tag{1}\\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus $\exp \left(\alpha A_{3}\right)$ is a rotation about z-axis by the angle α. Similarly you can verify that $\exp \left(\alpha A_{1}\right)$ and $\exp \left(\alpha A_{2}\right)$ are rotations by the angle α about the x and y axes, respectively. The axes are supposed to be oriented in their positive directions. Check that the right screw rule is observed!

Now we can establish our main result:
Theorem 2. Rotation corresponding to the vector $a=\left(a_{1}, a_{2}, a_{3}\right)$ is given by the formula

$$
\begin{equation*}
g(a)=\exp \left(a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3}\right) \tag{2}
\end{equation*}
$$

Proof. Let us find the eigenvalues of the skew symmetric matrix

$$
B:=a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3}=\left(\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right)
$$

We obtain the characteristic polynomial

$$
\operatorname{det}(B-\lambda I)=-\lambda^{2}-\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right) \lambda
$$

so the eigenvalues of B are $0, \pm i\|a\|$, and by the spectral mapping theorem the eigenvalues of $g(a)=\exp B$ are

$$
1, \quad \exp (\pm i\|a\|)
$$

Now it is easily verified that $\left(a_{1}, a_{2}, a_{3}\right)^{T}$ is an eigenvector of B corresponding to eigenvalue 0 . So it is the eigenvector of $\exp B$ with eigenvalue 1 . Then $\exp B$ is orthogonal (as the exponent of any skew-symmetric matrix), has determinant 1 and eigenvelues $1, e^{ \pm i\|a\|}$, so it is the rotation with axis a by angle $\|a\|$.

