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1. INTRODUCTION

In this paper, we prove, among other things, that any family of noncons-
tant entire functions of one complex variable has a greatest common right
factor under composition. We prove a corresponding result for any family
of pairwise dependent entire functions of N complex variables. Since f and
af +b, where a, b # C and a{0 have all the same properties from the point
of view of factoring under composition, we once and for all identify them,
but continue (perhaps a little improperly) to talk about the equivalence
classes as ``functions.'' Moreover we identify f and f b A where A is a
biholomorphic one-to-one map of CN onto CN. Here are some definitions.

Let f = f (z1 , ..., zn) be a nonconstant entire function of N complex
variables, and let g= g(w) be a nonconstant holomorphic function in the
region consisting of the complex plane minus any possible value omitted
by f. Then the composition h=g b f, h(z1 , ..., zN)=g( f (z1 , ..., zN)) is a well-
defined entire function, and in this case we call f a right factor of h. If we
have a family of the form [h:]=[ g: b f ], then we say that f is common
right factor of [h:]. If we have h=g: b f: , where : runs over an index set
A, then we call h a common left multiple of the f: .

For entire functions f and g of N complex variables, define f �g if
f (z)= f (w) implies g(z)=g(w), z, w # CN. Then we remark that f � g if
and only if f is a right factor of g. The ``if '' part is trivial. For the ``only
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if '' part, just define h=g( f &1) as a germ at some point and then continue
analytically along any curve in the image of f. We may ignore the
singularities of f&1 because of Iversen's theorem [NEV], which says that
for any curve there exist arbitrarily small deformations of this curve such
that f &1 can be analytically continued along these deformed curves. If we
describe a closed path, f &1 takes the values a and b at the beginning and
end of the path respectively. We have f (a)= f (b). Thus g(a)=g(b) by
assumption. So h is single-valued and g=h b f.

Thus we have made the nonconstant entire functions of N complex
variables, for each fixed N, into a lattice. It is natural to ask about glb's
(greatest lower bounds) and lub's (least upper bounds) within this lattice.

Given a family [ f:] of nonconstant entire functions of N complex
variables, we say that a nonconstat entire function g of N complex
variables is a weak greatest common right factor of [ f:] if (writing in
terms of the ordering) g� f: for all : and if h� f: for all : and g�h
implies g=h. Thus a weak greatest common right factor is a glb in the
weak sense. There is no prior guarantee that there are not several different
glb's.

In the same context, we say that g is a strong greatest common right
factor of [ f:] if g� f: for all : and if h� f: for all : implies h� g.

Thus g is a greatest common right factor of [ f:] if, first of all, it is a
common right factor of [ f:] and, secondly, if every other common right
factor of [ f:] is a right factor of g.

Similarly, we define weak (and strong) least common left multiples of
[ f:]. We remark that even in the simplest situations, there may be no
common left multiple at all. For example ez and eiz have no common left
multiple. That is, the equation F(ez)=G(eiz) has no nonconstant entire
solutions, for then F(ez) would be a doubly periodic entire function.

Given two nonconstant entire functions f and g on CN, we say that f
and g are dependent if

}
�f
�zi

�g
�zi

�f
�zj

�g
�zj
}#0 for all i, j=1, ..., N.

This is the same as saying that the rank of the Jacobian matrix of f and
g is 1. We note that any family of nonconstant entire functions of one com-
plex variable is dependent.

Here is an instructive example suggested by C. C. Yang. Let

F(z)=zez b ez=ez b (z+ez). (1.1)
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Suppose

f (z)=A(z) b ez=B(z) b (z+ez), (1.2)

i.e., that f has both ez and z+ez as right factors. We claim then that

f (z)=C(z) b F(z). (1.3)

In other words, F(z) is the least common left multiple of ez and (z+ez). To
prove the claim, we have from (1.2)

B(z) b (z+2?i+ez)=B(z+ez), (1.4)

and on letting w=z+ez, we get

B(w+2?i)=B(w). (1.5)

Hence, for some C(z),

B(z)=C(z) b ez (1.6)

and so from (1.2) we get

f (z)=C(z) b ez b (z+ez)=C(z) b F(z),

as claimed.
Our first two theorems are special cases of the succeeding two theorems,

but they permit shorter and more direct proofs, given in Section 2.

Theorem 1.1. Any family of nonconstant entire functions of one complex
variable has a (unique) strong greatest common right factor.

Theorem 1.2. Any family of nonconstant entire functions of one complex
variable that has a common left multiple has a (unique) strong least common
left multiple.

Theorem 1.3. Any family of pairwise dependent nonconstant entire func-
tions of N complex variables has a (unique) strong greatest common right
factor.

Theorem 1.4. Any family of nonconstant entire functions of N complex
variables that has a common left multiple has a (unique) strong least common
left multiple.

In Section 4, we will state and prove Theorem 1.3$ and 1.4$, which are
the weak versions of Theorem 1.3 and Theorem 1.4, in the sense that we
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replace the word ``strong'' with the word ``weak'' in the conclusions. We
will use these theorems to prove Theorems 1.3 and 1.4.

We say that a nonconstant entire function f of N variables is prime to
mean that every right factor of f has the form af +b for some a, b # C,
a{0. (In case N=1, of course, we also permit az+b as a right factor.) For
example, it was proved in [RUY] that if A(z) and B(w) are nonconstant
entire functions of one variable, then A(z)+B(w) is a prime entire function
of two variables. It follows from Theorem 1.3 that if f and g are dependent
entire functions of N complex variables, for N�2, and if f is a prime, then
g=h b f for some entire function h of one complex variable. For f and g
have a strong greatest common right factor H; f =. b H and g=� b H.
Because f is prime, we have H=af +b. So g=� b (af +b)=' b f.

2. THE CASE N=1

In this section, we give short proofs of Theorems 1.1 and 1.2 that depend
on a theorem of Grauert on analytic equivalence relations. These proofs
seem not to extend to the case N�2.

Let f be a nonconstant holomorphic map of C to any Riemann surface.
(By Picard's theorem, the Riemann surface can only be one of C or
C*=C"[a] or the sphere or a torus.) To any such map corresponds an
equivalence relation t in C defined by xty if and only if f (x)= f ( y).
Consider the graph G of this equivalence relation in C2, i.e., the set of
points (x, y) in C2 such that f (x)= f ( y). This is an analytic subset of C2

of pure codimension one. This means that every point of G has a
neighborhood such that the intersection of G with this neighborhood coin-
cides with the zero set of some nonconstant function analytic in this
neighborhood. To see this, if f maps to C or C"[a], we can just take the
function f (x)& f ( y) in the above statement. If f maps to the sphere and
x and y are not poles, we take f (x)& f ( y) again. If x and y are poles, take
1�f (x)&1�f ( y). The argument in the case of the torus is the same, using
local coordinates on the torus.

It is evident that the set G contains no ``vertical'' or ``horizontal'' lines,
i.e., complex lines of the form x=a or y=a. This is because f is non-
constant. Now for the converse statement, which is Grauert's theorem (see
[GRA].) (We give only a limited version.)

Theorem G. Let R be any equivalence relation on C whose graph is an
analytic subset of C2 containing no vertical or horizontal lines. Further sup-
pose that the graph of R is everywhere of codimension one. Then there exists
a holomorphic map f from C to one of the four Riemann surfaces listed
above, such that xRy if and only if f (x)= f ( y).
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This is a very particular case of the theorem stated on the first page
(p. 115) of [GRA]. In our one-dimensional case it can be proved easily
and directly; we do this in the Appendix.

Now we turn to the factorization considerations. Let f be an entire func-
tion. We will say that g is its right factor if g is a holomorphic map from
C to a Riemann surface S and there exists a holomorphic map h from S
to C such that f =h b g.

Observation. Let F be the graph of the equivalence relation defined by
f and let G be the graph of the equivalence relation defined by g. Then g
is a right factor of f if and only if G is a subset of F.

Proof. Let f =h( g). If (x, y) belongs to G then g(x)=g( y), so
f (x)= f ( y) and so (x, y) belongs to f. In the opposite direction, suppose
G is a subset of F. We have to define h. Take w # S, where S is the image
surface of g. Let x be any g-preimage of w, and set h(w)= f (x). This does
not depend on the particular choice of the preimage because, by assump-
tion, g(x)=g( y) implies f (x)= f ( y). So a function h from S to C is
defined and f =h b g. It is trivial that h is holomorphic.

We now prove that if G is an analytic subset of C2 which is the graph
of an equivalence relation that contains no horizontal or vertical lines, then
the derived set (i.e. the set of limit points) G$ of G is also the graph of an
equivalence relation. It is trivial that for every x, the point (x, x) belongs
to G$. It is also trivial that if (x, y) # G$ then ( y, x) # G$. It remains to prove
that (x, y) # G$ and ( y, z) # G$ implies (x, z) # G$. Now (x, y) is not an
isolated point of G. So there is a sequence (xn , yn) of points in G which
tends to (x, y), and all the members of the sequence are different from
(x, y). Because G contains no vertical lines, we may assume that all xn are
different from x. Now ( y, z) is also not isolated in G and G does not con-
tain the vertical line given by setting the first coordinate equal to y. Denote
the coordinates in C2 by u and v. The analytic set G has dimension 1 at the
point ( y, z) because this point is not isolated. By the Local Uniformization
Theorem (See [CHI], p. 71) a part of G in a neighborhood of ( y, z) can
be given by u= p(t), v=q(t), where t runs through a neighborhood of 0 in
C, and the functions p and q are holomorphic in this neighborhood,
p(0)=y, q(0)=z, and neither p nor q is constant, because G does not con-
tain vertical or horizontal lines. Because a nonconstant analytic function p
is an open map, its image contains a whole neighborhood of y. So there is
a sequence tn � 0 such that yn= p(tn). Set zn=q(tn). Then ( yn , zn) # G,
( yn , zn){( y, z), and ( yn , zn) � ( y, z). This means that for all yn close to y,
the set G contains points ( yn , zn) close to ( y, z), but different from ( y, z).
Thus, because G is the graph of an equivalence relation, it contains a
sequence (xn , zn) tending to (x, z). These points are all different from (x, z)
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because xn is different from x. So (x, z) belongs to the derived set G$, which
is what we wanted to prove.

Let F be a family of entire functions (of one variable). For each function,
consider the graph of the corresponding equivalence relation, and take the
intersection of all these graphs��it forms the graph of an equivalence rela-
tion. It is also an analytic set because the intersection of analytic sets is
analytic [GUN]. Now let G be the perfect part of the intersection. (G is just
the derived set of the intersection. From Theorem 15 on p. 89 of [GUR],
it follows that G has no isolated points, because the isolated points are the
irreducible varieties of dimension zero.) Then (by Theorem G) G corre-
sponds to some function g mapping C to some Riemann surface. This func-
tion g is a common right factor of the family F. Let k be another function
which is a common right factor for the whole family. The graph K of the
equivalence relation induced by k is contained in each graph of our family
of graphs, and so it is contained in their intersection. But K has pure
dimension 1. (This is true for any graph of an equivalence relation induced
by a function.) So K is perfect. Thus K is contained in the derived set of
the intersection��in other words, K is contained in G. So k is a right factor
of g. Thus, Theorem 1.1 is proved, once we observe that S cannot be com-
pact, since h maps S to C, and h is not constant (Here, we choose one
f # F and write f =h b g).

We sketch the proof of Theorem 1.2. It is similar to the proof just given.
Let F be a family of entire functions which are all right factors of some
entire function f. Then the equivalence-relation graphs corresponding to
the functions of F are contained in the graph F corresponding to f. Now
take the intersection of all analytic subsets of C2 which are (i) contained in
F, (ii) are the graphs of equivalence relations, and (iii) contain all the
graphs of equivalence relations induced by functions of F. This is a non-
empty family because it contains F and the intersection is an analytic set,
which we call G. It is the graph of some equivalence relation and it
contains all the graphs corresponding to functions in F.

Let G$ be the derived set of G. It still has all the properties (i), (ii),
(iii)-property (iii) because all the graphs corresponding to functions in F
are perfect. Thus, we may apply Theorem G to conclude that there is a
function g from C to some Riemann surface S corresponding to G$. This
function is the ``strong least common left multiple'' of the family g. Finally,
it is entire because it is a right factor of f.

3. THE Y-PROCESS

We prove a factorization result for degenerate mappings from CN to C2.
First we need the local version.

339ENTIRE FUNCTIONS



File: 607J 159807 . By:CV . Date:26:12:96 . Time:10:00 LOP8M. V8.0. Page 01:01
Codes: 2851 Signs: 2064 . Length: 45 pic 0 pts, 190 mm

Lemma 3.1. Let F : (CN, A) � (C2, B) be a nonconstant germ of a
holomorphic map, which is degenerate in the sense that the rank of the
Jacobian matrix is �1 at all points. Then F can be factored into germs of
holomorphic maps in the following way: F=h b g, where

g: (CN, A) � (C, 0) (3.1)

and

h: (C, 0) � (CN, B), (3.2)

where h is injective. The germ h is uniquely defined up to a precomposition
with an injective holomorphic germ (C, 0) � (C, 0).

Proof. Assume without loss of generality that A=0 and B=0 and that
F is holomorphic in some neighborhood V of 0 in CN. For every point
A # V we define the fiber through A as LA(F)=[Z # V: F(Z)=F(A)]. We
have rankZ F�1, Z # V so corankZ F=2&rankZ F�1, Z # V. By
Lemma 6 from [GUN], p. 137, we have dimZ LZ(F)�1, Z # V. If
dimZ LZ(F)=2 at some point Z # V, then F=constant. So dimZ LZ(F)=1
for all Z # V. Now we apply Theorem 8 of [GUN], p. 140 to conclude that
there is a neighborhood V $�V such that X=F(V $) is a holomorphic sub-
variety in an open neighborhood V" of 0 in C2. By Lemma 11 in [GUN],
p. 143, we see that X is of dimension 1 at each of its points. Now shrink,
if necessary, our neighborhoods V $ and V" in such a way that X has no
singular points with the possible exception of 0 in C2. This is possible to
do because the singular points of one-dimensional varieties are isolated
[GUN]. Then it follows from the local uniformization theorem (see [CHI],
p. 70) that there is a holomorphic bijection h of some neighborhood of zero
in C onto X. So the conclusion of the lemma holds with g=h&1 b F. The
uniqueness statement is evident.

To formulate the next result we need the following

Definition. A map H : C � C2 satisfies condition Y if, * being holo-
morphic in a neighborhood of 0 in C, *(0)=0, *$(0){0 and

H(z+u)=H(*(z)+v)

near 0 implies that u=v.

Theorem 3.2. Let F : CN � C2 be a nonconstant mapping such that the
rank of the Jacobian matrix of F does not exceed 1. Then there exist entire
mappings G:CN � C and H:C � C2 such that F=H b G, or else
G:CN � C"[a] and H: C"[a] � C2 such that F=H b G. Furthermore, H is
locally injective and satisfies the Y-condition.
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The factorization F=H b G given by this theorem will be called the
Y-process. To be more precise the input of the Y-process is a degenerate
map F=(,, �), where , and � are entire functions whose Jacobian deter-
minant is equal to 0 and the output is the pair (H, G). It is clear that G is
a right common factor of , and �. At the end of this section we will show
that this is actually the strong greatest right common factor.

Before starting the proof, we introduce some ``universal objects'' namely
a (non-connected) Riemann surface S and a holomorphic map H� :S � C2.

Consider the set of all pairs (D, .), where D is a neighborhood of 0 in
C and .: D � C2 is an injective holomorphic map. We say that (D1 , .1) is
equivalent to (D2 , .2) if there exist neighborhoods of 0, D3 and D4 ,
D3�D2 , D4�D1 and a biholomorphic bijection �: D3 � D4 such that

�(0)=0

and

.2=.1 b � on D3 .

The equivalence class of the map . is denoted by [.]. The set of all equiv-
alence classes is called S.

We are going ton define an analytic structure on S such that S will
become a (non-connected) Riemann surface. To do this, we have to define
some injective maps from disks B==[z: |z|<=] to S that will be the coor-
dinate maps. The images of these maps will be called neighborhoods. We
will have to show that the correspondence maps are analytic and that the
topology defined by these neighborhoods is Hausdorff.

We now define the coordinate maps. Fix any =>0 and a holomorphic
injective map .: B2= � C2. For every a # B= denote by pa # S the class of the
map

.a : B= � C2, z [ .(z+a).

We call the map a [ pa , B= � S a coodinate map. It is injective because .
is injective. For if a, b # B= and a{b then .a(0){.b(0) and thus
pa=[.a]{[.b]=Pb . The images of the coordinate maps cover S.

We now show that the correspondence maps are analytic. Let T1 : B= � S
and T2 : B= � S be two coordinate maps defined with the help of two
holomorphic injections .$ and .": B2= � C2 as above. If the images of T1

and T2 intersect, we have a bijection L=T&1
2 b T1 : U1 � U2 where U1 and

U2 are some subsets of B2= . This L is called a correspondence map, and we
have to show that it is analytic.

Take a point a0 # U1 and set b0=L(a0) # U2 . By the definition, we have

[.$a0
]=[."b0

],
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which means that there exists a holomorphic injective map �, �(0)=0
such that .$a0

=."b0
b � or

.$(z+a0)#."(�(z)+b0)

in some neighborhood of 0. We can write this as

.$(z+`+a0)#."(�(z+`)&�(`)+�(`)+b0),

which holds for all small enough values of z and `. Putting a=a0+`,
b(a)=b0+�(`)=b0+�(a&a0) and �a(z)=�(z+`)&�(`), we get

.$a=."b(a) b �a

and

�a(0)=0.

This means that [.$a]=[."b(a)] so L(a)=b(a) because L is bijective. But
b(a) is a holomorphic function of a, so L is holomorphic.

We now prove that S is a Hausdorff space. Let p1 and p2 be two
elements of S, p1{ p2 . We want to find disjoint neighborhoods of p1 and
p2 . Take a representative for each class p1 and p2 ,

.i : B= � C2, i=1, 2.

If .1(0){.2(0) then we can find an =>0 such that .1(B=)=< so then p1

and p2 have disjoint neighborhoods.
From now on we assume that .1(0)=.2(0). Assume that p1 and p2 have

no disjoint neighborhoods. This means that there are aj � 0 and bj � 0
such that

.1(z+aj)=.2(�j(z)+bj), z # Uj , (3.3)

where �j are holomorphic with �j(0)=0 and Uj are some neighborhoods
of 0. Let .1

i and .2
i be the first and second coordinates of .i , i=1, 2. We

assume without loss of generality that all these functions are nonconstant.
We have then

.k
i (z)=zmi , k qi,k(z), qi, k(0){0,

where qk
i are holomorphic functions in some neighborhood of 0 and mi, k

are natural numbers. Then any branch of the analytic function (.1
2)&1 b .1

1 ,
which tends to 0 when z tends to 0 can be analytically continued in some
punctured neighborhood V of 0 and has the form

s1(z)=zm1, 1 �m2, 1 r1(z), (3.4)

where, r1 being holomorphic at 0, r1(0){0.
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Thus we have

.1
1(z)=.1

2(s1(z)), z # V. (3.5)

Now take j in (3.3) so large that (Uj+aj) & V{< and fix this value of j.
Comparing (3.5) with (3.3), we conclude that s1(z)=�j(z&aj)+bj&aj in
the sense that the left side is the analytic continuation of the right side.
Applying the same argument to the second coordinate we conclude that

.2
1(z)=.2

2(s2(z)), (3.6)

where

s2(z)=zm1, 2 �m2 , 2 r2(z) (3.7)

and again from (3.3) it follows that s2(z)=�j(z&aj)+bj&aj . We conclude
that s1=s2 . Thus from (3.4) and (3.7) follows m1, 1m2, 2=m1, 2m2,1 or
m1, 1 �m1, 2=m2, 1�m2, 2 . But both fractions m1, 1 �m1, 2 and m2, 1 �m2,2 are
irreducible because .1 and .2 are both injective. We conclude that
m1, 1=m2, 1 and m1,2=m2, 2 , so the function s=s1=s2 is actually
holomorphic in a full neighborhood of 0 and its derivative at 0 does not
vanish. From (3.5) and (3.6) we conclude that .1=.2 b s and this con-
tradicts the assumption that .1 and .2 represent different elements of S.

Next we define the map

H� : S � C2, p [ p(0).

Remark 3.3. It is evident from the definition of S that for the classes p
which serve as points of S the value p(0) is well defined that is does not
depend on the germ representing the class. It is also evident from the
definition of the analytic structure on S that H� is analytic.

Now we have a preliminary form of Theorem 3.2.

Theorem 3.2*. Let F : CN � C2 be a nonconstant mapping such that the
rank of the Jacobian matrix of F does not exceed 1. Then F=H� b G� where
G� is a holomorphic map from CN to S and H� is the projection from S to C2

defined in Remark 3.3 (H� does not depend on the choice of F). The map G�
is uniquely determined by F.

Proof of Theorem 3.2*. If we have an entire function F satisfying the
condition of the Theorem, then, by Lemma 3.1, to each point A # CN an
element hA is associated. Denote the resulting map by G� : A [ hA . Then it
is clear that F=H� b G� , where the map H� is defined in the Remark 3.3.

343ENTIRE FUNCTIONS



File: 607J 159811 . By:CV . Date:26:12:96 . Time:10:00 LOP8M. V8.0. Page 01:01
Codes: 2899 Signs: 2178 . Length: 45 pic 0 pts, 190 mm

Let us prove that G� is analytic. Fix A # CN and apply Lemma 3.1. We
obtain a neighborhood V of A and the factorization in this neighborhood

F=h b g,

where g: (V, A) � (U, 0) and h: (U, 0) � (C2, F(A)) where U is some
neighborhood of 0 in C. Then for Z0 # V we can obtain the similar fac-
torization,

F=hZ0
b gZ0

,

valid in a neighborhood of the point Z0 , by putting

fZ0
(Z)=gA(Z)&gA(Z0)

hZ0
(Z)=hA(Z+gA(Z0)).

So the element G� (Z) # S is equal to [h( }+F(Z0))]. Thus it depends
analytically on Z0 with respect to the analytic structure we introduced
in S.

It remains to notice that G� is uniquely determined by F. This follows
from the uniqueness statement in Lemma 3.1 and the definition of S.

Proof of Theorem 3.2. If we have an entire mapping F, satisfying the
conditions of the Theorem, we first apply Theorem 3.2* to obtain the fac-
torization F=H� b G� . Denote by S1 the image of G� . Then S1 is a connected
Riemann surface because it is the continuous image of a connected set. If
we restrict G� on any complex line in CN on which F is nonconstant, then
we get a nonconstant holomorphic map from the complex line to the
Riemann surface S1 . Thus S1 is a parabolic Riemann surface in the sense
of Nevanlinna's book [NEV], namely the universal covering surface of S
is the complex plane. Now we have a nonconstant restriction of the map
H� : S1 � C2, so S1 is noncompact. Thus by Picard's theorem S1 is C or
C*=C"[a] for some a # C.

In the first case, we let P be a holomorphic bijection of C onto S1 and
we let H=H� b P&1 and G=P b G� to get our conclusion. A similar device
works in the second case, except that P is a biholomorphic bijection of C*
onto S1 . (See Fig. 1.)

It remains to prove that H satisfies the Y-condition. Observe that the
statement H(z+u)#H(*(z)+v) in a neighborhood of 0 is equivalent to
[H(z+u)]=[H(z+v)] by the definition of the equivalence classes.
Denote by P* the map u [ [H(z+u)]. Then the Y-condition is the same
as the injectivity of P*. By the definition of G� we have G� =P* b G. On the
other hand G� =P b G. Thus, because the range of G is dense in C we con-
clude that P=P*. It follows that P* is injective because P is injective. This
proves that H satisfies the Y-condition.
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Figure 1

The proof of Theorem 3.2 is thus complete.

Now we show that factorization given by Theorem 3.2 is unique.

Theorem 3.4. In the context of Theorem 3.2 the factorization F=H b G,
is unique assuming that H is locally injective and satisfies condition Y.

Thus, given a factorization F=H b G we can check whether this fac-
torization is obtained by the Y-process by verifying two conditions: that H
is locally injective and satisfies the Y-condition.

Proof of Theorem 3.4. Suppose that H1 is locally injective and satisfies
condition Y. Define P1* as above, so that P1* is injective. We check that
H1=H, G1=G and P1*=P*, where H, G and P* are defined in the proof
of Theorem 3.2. For we may choose, in Lemma 3.1

gA(z)=G1(z)&G1(A)

hA(z)=H1(z+G1(A)),

which is admissible because H1 is locally injective.

Proposition 3.5. Every finite family of pairwise dependent entire func-
tions has a strong greatest right common factor.

If we have two dependent entire functions f, and f2 from CN to C1, then
let F=( f1 , f2) from CN to C2, and apply Theorem 3.2*. Denote by S1 the
image of G� . Then, as before, S1 is a connected parabolic noncompact
Riemann surface, so there is a one-to-one map k from S1 to C or C"[a].
We have the decomposition F=(H� b k&1) b (k b G� ). We claim that the right
factor k b G� in this decomposition is the greatest common right factor of f1

and f2 . Indeed, let F= f b g be any decomposition. Then f has rank�1

345ENTIRE FUNCTIONS



File: 607J 159813 . By:CV . Date:26:12:96 . Time:10:00 LOP8M. V8.0. Page 01:01
Codes: 2702 Signs: 2025 . Length: 45 pic 0 pts, 190 mm

and Theorem 3.2* is applicable to f. It gives f =H� b q, so that F=H� b q b g.
On the other hand, F=H� b G� as before, and from the uniqueness statement
in Theorem 3.2* we conclude that q b g=G� . Thus g is a right factor of
G=k b G� , because k is one-to-one. This proves that any two dependent
entire functions have a strong greatest common right factor. It follows
immediately that any finite set of dependent functions has a strong greatest
common right factor. To get the strong greatest common right factor of an
infinite family requires some new ideas, which we now go into.

Remark 3.6. Theorems 3.2, 3.2* and 3.4, as well as Lemma 3.1 remain
true if we consider a holomorphic map F:CN � Cn, n�2 whose Jacobian
matrix has rank 1. The proofs also remain the same.

4. THE EXISTENCE OF WEAK GREATEST COMMON RIGHT
FACTORS AND LEAST COMMON LEFT MULTIPLES

Definition. A family F of nonconstant entire functions of N variables
is linearly normal if for each f # F there exist complex constants af and bf ,
af {0, such that any net Q=[af f +bf : f # F0�F] has a subnet Q* that
is uniformly convergent on compact subsets of CN to a nonconstant entire
function.

Examples. The set [nz: n=1, 2, 3, ...] although not normal in any
neighborhood of 0 is linearly normal in all of C since (1�n) nz+0 � z
uniformly on compacta. The family [zn: n=1, 2, ...] in C is not linearly
normal on C. For suppose that anzn+bn � g uniformly on compacta. On
considering |z|>1, we see that an must approach 0. But then for |z|<1,
bn � g so that g=const for |z|<1 and hence for all z # C.

Proposition 4.1. Let f0 be a nonconstant entire function on CN and let
8 be the set of nonconstant entire funtions � f0 (in the ordering of the intro-
duction.) Then 8 is a linearly normal family.

Choose an f0 # 8 and suppose that f0(z$)=0, f0(z")=1 for suitable
z$, z" # CN. This can be achieved by a transformation f0 [ af0+b, a, b # C,
a{0, if necessary.

Now if f � f0 then f (z$){ f (z") so by a linear change of variables, we
may suppose f (z$)=0 and f (z")=1 for all f # 8.

Let

G0=[z # CN: f0(z){0 and f0(z){1].
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If f # 8 and z # G0 then f (z){0 and f (z){1. For suppose, for example,
that z # G0 and f (z)=0. Then f (z)= f (z$) and hence f0(z)= f0(z$) which
is impossible. So, on G0 , all the functions in 8 omit 0 and 1. Hence, 8
restricted to G0 forms a normal family by Montel's Theorem (see [HIL]).
Let [ f:] be a net of functions drawn from 8 that converges uniformly on
compact sets in G0 in the spherical metric on the range. If the limit function
is finite, then the f: are uniformly bounded on compact subsets of G0 .

Lemma 4.2. Given a family of entire functions on CN that is uniformly
bounded on compact subsets of the complement of a given proper
holomorphic variety, the elements of the family must be uniformly bounded
on compact subsets of CN.

Proof. (This proof is due to C. McMullen, whom we thank.) For N=1
and the subvariety V=[z=0] this is easy: the cricle S1=[ |z|=1] is a
compact subset of the complement of V, and by the maximum principle, if
an entire function satisfies | f |�M on S1 then | f |�M on V.

To treat the general subvariety V in CN, pick a point v in V and a com-
plex line L passing through v in general position. Then v is an isolated
point of L & V so that there is an S1 in L encircling v and avoiding V. We
may translate this S1 to nearby parallel lines L$; it remains outside V since
V is closed, and so obtain a compact set K=S1_D� N&1 (where D� is a
closed disk) outside V. The sup of the absolute value of an entire function
f on K bounds it on a neighborhood of v.

We apply Lemma 4.2 by taking V=[z # CN: f0(z)( f0(z)&1)=0].
So in case the limit function f is finite on G0 , we see that it extends to

be an entire function on CN. Surely it is nonconstant, since f (z$)=0 and
f (z")=1.

So we have handled every case except the one where the above proce-
dure always gives the limit #�, no matter what z$ and z" may be. We call
this case the ``big bang.'' Let us now show that the big bang cannot happen.

Let P1 be the procedure where the f: are normalized so that f:(z$)=0
and f:(z")=1. Let Ps be the procedure where f:(z$)=0, f:(s)=1, and let
Pt be the procedure where f:(z$)=0, f:(t)=1. For any complex numbers
s and t, let 1 f: , s f: , t f: be the suitably normalized f: .

Now s f:=a1 f:+b. Since s f:(z$)=b, we have b=0 so that
s f:(z)=af (z). But s f:(s)=1=a1 f:(s) so that a=1�1 f:(s). We conclude
that s f:(t)=1 f:(t)�1 f:(s). Under the hypothesis of the big bang, we have
1 f:(t)�1 f:(s) � �. By symmetry (interchanging s and t) we also have
1 f:(s)�1 f:(t) � �. This is a contradiction since we have a net of numbers
approaching � such that the net of reciprocal numbers also approaches �.
Proposition 4.1 is proved.
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Proposition 4.3. Let F be a family of nonconstant entire functions on
CN such that any two elements of F are dependent. Then there exists a com-
mon right factor g of all the functions in F, i.e. g� f for all f # F.

Proof. The proof is by transfinite induction (see, for example [SUP]).

Let [ f: : : # A] be a well-ordering of F. If : is not a limit ordinal in A
then we let g:&1, by induction, be such that g:&1� f; for all ;�:&1.
Apply the Y-process to F=( g:&1, f:) to produce G=g: with g:� g:&1

and g:� f: . Then g:� f; for all ;�:.
If : is a limit ordinal in A, then for every ;<: there is an entire function

g; with the properties g;� f: and g;� f# for all #�;. This is our induction
hypothesis. Then [ g; : ;<:] is a decreasing chain of entire functions (we
can choose g0= f0) and so we can apply Proposition 4.1 to conclude that
[ g;] is a linearly normal family. Let g be a nonconstant finite limit. This
g works. To see this, fix f = f$ # F, $�:. We may write f =. b g$ . We
have to prove g� f. To this end, suppose we have z$, z" # CN with z${z"
but g(z$)=g(z"). We must prove that f (z$)= f (z"). By Hurwitz's theorem,
we can choose z$(;) and z"(;) with z$(;) � z$, z"(;) � z" and
g;(z$(;))=g;(z"(;)), ;<:. Now f (z$(;)) � f (z$), f (z"(;)) � f (z"). But
f (z$(;))=.( g$(z$(;)), f (z"(;))=.( g$(z"(;)). Furthermore, g$(z$(;))=
g$(z"(;)) because g;�g$ for ; close enough to :. Hence f (z$(;))=
f (z"(;)). Consequently f (z$)= f (").

Theorem 1.3$. Same as Theorem 1.3 except that the greatest common right
factor in the conclusion is asserted only to be weak and not necessarily strong.

Theorem 1.4$. Same as Theorem 1.4 except that the least common left
multiple in the conclusion is asserted only to be weak and not necessarily
strong.

Proof of Theorem 1.3$. By Proposition 4.3 there exist non trivial ascending
chains [ g:] of common right factors of F. By the Hausdorff maximal theorem
[SUP], there is a maximal such chain 1. Every # # 1 satisfies #� f0. So we may
apply the method of the preceding paragraphs to find a top elementg of 1. This
g is clearly a weak greatest common right factor of F.

The proof of Theorem 1.4$ is along the same lines except that we take
descending chains, and we omit it.

5. FROM WEAK TO STRONG

It is easy to prove that if the family F has a unique weak greatest com-
mon right factor, then it is strong. For suppose that \ is the unique weak
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greatest common right factor of F. Further, suppose \$ divides (right)
every function in F. Then, going back to the proof of Theorem 1.3$, there
is a maximal ascending chain of terms containing \$, and the top element
\" of this chain is a weak common right factor for F. But by the supposed
uniqueness, \=\", so \$�\ since \$�\"=\.

Similarly, if F has a unique weak least common left factor, then it is
strong.

Proposition 5.1. If two nonconstant entire functions of N complex
variables have a common left multiple, then they have a strong least common
left multiple.

Proof. By Theorem 1.4$, if we call the entire functions A and B, they
must have at least one weak common left multiple. It is enough, by the pre-
vious remark to prove that it is unique. Suppose they have two, say M and
M$. We prove that M=M$. Let K be the output of the Y-process applied
to M and M$. We will prove that K is a common left multiple of A and B.
This leads to the following segment of the ordering (see Fig. 2), which
violates M and M$ being weak least common left multiples unless
M=K=M$. (Of course it follows from Theorem 3.2 that K is a common
right divisor of M and M$.) Write M=m b A and M$=m$ b A and to the
Y-process on F=(m, m$) to get m=. b ', m$=� b '. By Theorem 3.2,
H=(., �) is locally injective and satisfies condition Y. Thus we have

M=. b (' b A), M$=� b (' b A),

so that H=(., �) and G=' b A must, by Theorem 3.4, be the output of
the Y-Process applied to M, M$. (By Theorem 3.4, we have only to check
that (., �) is locally injective and satisfies the Y-condition. But we just
concluded this from Theorem 3.2.) And it is evident that ' b A is right-
divisible by A. So K=' b A. Similarly K='~ b B so that K is a common left
multiple of A and B, as claimed.

Figure 2
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Proof of Theorem 1.3. Let G and G$ be two greatest common right
factors of F. We need only prove that G=G$. Let L be the strong least
common left multiple of G and G$. We claim that L is a common right
factor of F. For choose A # F. Well, A is a common left multiple of G and
G$. So L�A. But this property of L violates the supposed properties of G
and G$ unless G=L=G$. The proof is complete.

Proof of Theorem 1.4. Theorem 1.4 is proved in essentially the same
way as Theorem 1.3, and we only sketch the proof. Let M be a common
left multiple of F, and let L and L$ be two weak common left multiples of
F. We must prove L=L$, let G be the strong greatest common right factor
of L and L$. Show that G is a common left multiple of F, etc.

APPENDIX

In this Appendix, we give a proof of Theorem G of Grauert that was
used in our second section. We first clarify our notations.

Notations: z, w, ... with or without subscripts-points in the plane; (z, w)-
points in C2. Upper case letters like Z=[zk]-(unordered) countable sets of
points in the plane with no finite limit points. We denote by B(z, r) the disk
in the plane with the center at z and radius r and B(z1 , z2 , r) the bidisk
B(z1 , r)_B(z2 , r). Finally D will always stand for the diagonal [(z, z):
z # C]/C2.

An analytic set 1/C2 of pure dimension 1 is called an analytic equiv-
alence relation if it has the following properties:

(a) (z, z) # 1, z # C;

(b) (z, w) # 1 O (w, z) # 1;

(c) (z1 , z2) # 1 and (z2 , z3) # 1 O (z1 , z3) # 1;

(d) No vertical line [(z0 , w): w # C] lies in 1.

(Now it follows from b that no horizontal line is contained in 1.

Theorem G. If 1 is an analytic equivalence relation then there exists a
Riemann surface S and holomorphic map f :C � S such that f (z)= f (w) iff
(z, w) # 1.

Proof. Let S be the set of equivalence classes and f (z) be the class of
the point z # C. We will introduce first a topology on S and then define an
analytic structure in such a way that S will become a Riemann surface and
f will be analytic.

First it is evident that f is not constant. It is surjective by the definition
and the number of classes is more than one.

350 EREMENKO AND RUBEL



File: 607J 159818 . By:CV . Date:26:12:96 . Time:10:00 LOP8M. V8.0. Page 01:01
Codes: 2325 Signs: 1251 . Length: 45 pic 0 pts, 190 mm

For every z0 # C and r>0 we define

N(z0 , r)=[ f (z): |z&z0|<r]/S. (1)

We will call these sets basic neighborhoods and we will verify now that they
form a base of a topology on S. More precisely, if X # S and X= f (z0) we
call N(z0 , r) a basic neighborhood of X.

1. First we have X= f (z0) # N(z0 , r). It remains to check that the
intersection of any two basic neighborhoods of a point X= f (z0) contains
another basic neighborhood of X. Let N(z0 , r0) and N(z1 , r1) be two basic
neighborhoods of X. This means that f (z0)= f (z1)=X. In other words
(z0 , z1) # 1/C2 and there is a finite set of pairs of functions ( pk , qk),
k=1, ..., n, analytic in a neighborhood V of 0 in C such that

pk(0)=z0 , qk(0)=z1

and

1 & U= .
n

k=1

[( pk(z), qk(z)): z # V]. (2)

None of these functions pk and qk is constant because 1 contains no vertical
and no horizontal lines. Choose $>0 so small that

B(0, $)/V

and

| pk(w)&z0|<r0 , |qk(w)&z1|<r1 if w # B(0, $) and k=1, ..., n. (3)

Now choose r2>0 such that

r2<r0 (4)

and

B(z0 , r2)/ pk(B(0, $)). (5)

We claim that N(z0 , r2)/N(z0 , r0) & N(z1 , r1). The first inclusion is
evident because of (4). Let us prove the second inclusion,

N(z0 , r2)/N(z1 , r1). (6)

Let X # N(z0 , r2). Then by the definition of N we have X= f (z) for some
z # B(z0 , r2). By (5) there is a w # B(0, $) and k such that z= pk(w). Then

351ENTIRE FUNCTIONS



File: 607J 159819 . By:CV . Date:26:12:96 . Time:10:00 LOP8M. V8.0. Page 01:01
Codes: 3052 Signs: 2318 . Length: 45 pic 0 pts, 190 mm

z$=qk(w) has by (3) the property |z1&z$|<r1 and by (2) we have
(z, z$) # 1. So f (z)= f (z$), thus X= f (z$) and z$ # B(z1 , r1), in other words
X # N(z1 , r1), which proves (6).

We proved that basic neighborhoods actually define a topology on S.
(The open sets are unions of basic neighborhoods).

2. Now we prove that the topology on S is Hausdorff. Let X0{X1

be two points in S. Pick z0 and z1 such that X1= f (z1) and X0= f (z0).
Then (z0 , z1) � 1 because X0{X1 . As 1 is closed in C2 we can find a bidisc

B(z0 , z1 , r) & 1=< (7)

We claim that N(z1 , r) & N(z0 , r)=<, where r>0 is defined by (7).
Assume the opposte. Then by (1) there are points z$ # B(z0 , r) and
z" # B(z1 , r) such that (z$, z") # 1, which contradicts (7).

3. From the definition of f and the topology on S it follows that
f :C � S is open and continuous. Let us show that f is locally one to one,
except at some isolated points in C. We call a point z0 # C ordinary if
(z0 , z0) is a non-singular point of 1. Singular points of a one-dimensional
analytic set 1 are isolated, so the set E/C of non-ordinary points is
isolated. Let z0 be an odinary point. Then as the diagonal D belongs to 1,
there exists r>0 such that

B(z0 , z0 , r) & 1=B(z0 , z0 , r) & D. (8)

So f restricted to B(z0 , r) is one-to-one.

4. Let M/S be the set of points which have no ordinary preimages
under f. Then M is isolated in S. We will introduce an analytic structure
on S"M such that f will become holomorphic on C"E. Let X0 # S"M
and z0 be an ordinary point such that X0= f (z0). Choose r>0 such that
the restriction of f on B(z0 , r) is one-to-one. We call this restriction a
coordinate map. The only thing to prove now is that the coordinate maps
are consistent (their compositions are holomorphic). Let N(z1 , r1) and
N(z2 , r2) be two basic neighborhoods generated by ordinary points z1 and
z2 , and assume that these neighborhoods intersect. Denote the restric-
tions of f on N(z1 , r1) and N(z2 , r2) by f1 and f2 respectively. Let
X # N(z1 , r1) & N(z2 , r2). This means that there are points z$ # B(z1 , r1) and
z" # B(z2 , r2) such that X= f (z$)= f (z"). It is enough to prove that f &1

2 b f1

is holomorphic at z$.
We will show first that the point (z$, z") # 1 is non-singular. It is enough

to show that for some r>0 the set 1 & B(z$, z") is the graph of a holo-
morphic function ,. (Then we can interchange z$ and z" to see that , has
a holomorphic inverse.)
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Assume that this is not the case. Then there are sequences

zk � z$, uk � z", vk � z" (9)

such that uk{vk and (zk , uk) # 1, (zk , vk) # 1. Then by transitivity
(uk , vk) # 1 and (9) contradicts the assumption that the point z" is ordinary:

1 & B(z", z", r0)=D & B(z", z", r0)=D & B(z", z", r0).

Now we have f &1
2 b f1=, in a neighborhood of z$, so the composition is

holomorphic.

5. We have defined the analytic structure on S"M such that the
restriction f : C"E � S"M is holomorphic. Recall that f : C � S is defined
as a continuous and open map. Still we cannot conclude the proof with the
classical removability theorem, because we don't know yet that S is a sur-
face! So we use the following result of M. Ohtuska [OHT].

Theorem O. Let f be a holomorphic map from a punctured disk B"z0 to
some Riemann surface S*. Then one of the following holds:

(i) The function f has a limit a # S* as z � z0 and the singularity at
z0 is removable.

(ii) The Riemann surface S* can be extended by adding one point
( puncture) a to S* such that f extended by f (z0)=a will become
holomorphic in B, or

(iii) The range of values of f at any punctured neighborhood of z0 is
conformally equivalent to a parabolic Riemann surface.

In our situation the alternative (iii) is certainly excluded because f is
continuous. So we can extend the Riemann surface S*=S"M by adding a
set of isolated points N and obtain the new Riemann surface S$=S* _ N
and a new function g: C � S$ which is holomorphic and coincides with f
on C"E. We have the natural map h: S$ � S (such that f =h b g), which is
the identity on S* and sends N to M. It remains to prove that h is one-to-
one. We have f =h b g. Evidently h is continuous. It is also open because
f and g are open. If there are X1{X2 in S$ such that X0=h(X1)=
h(X2) # S, then take disjoint neighborhoods V1 of X1 and V2 of X2 on S$,
not containing other points of N and consider a sequence Yk � X2 ,
Yk # V2 . Then by continuity h(Yk) � X0 but on other hand h(V1) does
not contain any of the points h(Yk), because h is the identity on
(V1"X1) _ (V2"X2). So h(V1) is not open. The contradiction proves that h
is one-to-one.

This is the end of the proof.

353ENTIRE FUNCTIONS



File: 607J 159821 . By:CV . Date:26:12:96 . Time:10:03 LOP8M. V8.0. Page 01:01
Codes: 1472 Signs: 1026 . Length: 45 pic 0 pts, 190 mm

REFERENCES

[CHI] E. M. Chirka, ``Complex Analytic Sets,'' Kluwer Academic, Dordrecht, 1989.
[GUN] R. C. Gunning, ``Introduction to Holomorphic Functions of Several Variables,

Vol. II, Local Theory,'' Wadsworth and Brooks�Cole, Belmont, CA, 1990.
[GUR] R. C. Gunning and H. Rossi, ``Analytic Functions of Several Complex Variables,''

Prentice Hall, Englewood Cliffs, NJ, 1965.
[GRA] H. Grauert, On meromorphic equivalence relations, in ``Contributions to Several

Complex Variables,'' Aspects of Mathematics, Vol. E9, pp. 115�145, Vieweg,
Braunschweig, 1986.

[HIL] E. Hille, ``Analytic Function Theory,'' Vol. II, Ginn, Boston, 1962.
[NEV] R. Nevanlinna, ``Analytic Functions,'' Springer-Verlag, Berlin, 1970.
[OHT] M. Ohtuska, Nagoya Math. J. 4 (1952), 103�108.
[RUY] L. A. Rubel and Chung-Chun Yang, The factorization of A(z)+B(w) under com-

position, Illinois J. Math. 39 (1995), 258�270.
[SUP] P. Suppes, ``Axiomatic Set Theory,'' van Nostrand, Princeton, NJ, 1960.

354 EREMENKO AND RUBEL


