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Isaac Newton is frequently called one of the most influential persons in
history. And certainly he was the most influential physicist or mathematician
of the Modern age1.

Some of the main things Newton is credited with are: discovery of dis-
solution of the white light into colors, invention of the Newtonian telescope,
the Universal law of gravitation, invention of Calculus, Newton’s binomial
formula, etc.

Here I am going to discuss the last two items. Newton did not publish
anything on Calculus, but nevertheless in his older age he was involved in a
bitter priority dispute with Leibniz about this.

One of the arguments used in this dispute was a letter Newton wrote
earlier to the secretary of the Royal society (Henry Oldenburg) for transfer
to Leibniz. The goal of such method of correspondence was apparently to be
able to claim priority later; a copy of the letter was preserved in the archives
of the Royal society.

In this letter he gives some hints about his inventions. This letter is
interesting for us, because in it we can read how Newton himself describes
his main discoveries, and which discoveries are most important on his own
opinion.

If you think that is is the Newton-Leibniz formula you were taught in
Calculus, you did not guess. It is all about infinite series.

As examples, the letter contains the series∫ x

0

√
1− t2dt = x− 1

2 · 3
x3 − 1

5 · 8
x5 − 1

7 · 16
x7 − 5

9 · 128
x9 + . . . , (1)

1Modern age is a usual name of the period in European history which started after
the Middle age, that is approximately in XVI century. See Wikipedia article “Modern
history” for a discussion of these terms.
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and the binomial series

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + . . . .

The binomial formula for (a+ b)n with a positive integer n was known long
time before Newton. It is this series which is proper to call Newton’s bino-
mial.

The letter also contains general formulations of Newton’s discoveries in
calculus, however they are encoded as anagrams2. The point was that he
did not reveal his discoveries to Leibniz, but later could prove his priority by
publishing the deciphering of the anagrams.

The two anagrams were these:
6accd ae 13eff7i3l9n4o4qrr4s8t12vx
which means:
Data aequatione quotcunque fluentes quantitates involvent fluxiones in-

venire et vice versa,
which is literally translated as:
Given an equation involving any number of fluent quantities, to find the

fluxions, and vice versa.
In our modern language, fluent quantities are functions and fluxions are

derivatives. The second anagram is longer and more interesting:
5accdæ10effh11i4l3m9n6oqqr8s11t9y3x:
11ab3cdd10eæg10ill4m7n6o3p3q6r5s11t8vx,
3acæ4egh5i4l4m5n8oq4r3s6t4v,
aaddæcecceiijmmnnooprrrsssssttuu.
which after deciphering and translating into English means:
One method consists in extracting a fluent quantity from an equation at

the same time involving its fluxion; but another by assuming a series for
any unknown quantity whatever, from which the rest could conveniently be
derived, and in collecting homologous terms of the resulting equation in order
to elicit the terms of the assumed series

First part of this sentence can be restated as: the method consists in solv-
ing differential equations. The second part says that one can solve equations
by substituting a series with undetermined coefficients and then determine
the coefficients one-by-one.

This is indeed a great discovery, and in what follows I will try to explain
it with examples.

2An anagram is a coded message where the letters of the original message are permuted.
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Example 1. Binomial series, or Newton’s binomial.

(1 + z)α = 1 +
∞∑
n=1

α(α− 1) . . . (α− n+ 1)

n!
zn.

The left hand side means the principal branch which equals 1 at 0. The
expansion holds in the disk of convergence |z| < 1, for any complex α. Check
that when α = m is a positive integer then this formula is consistent with
the usual binomial formula

(a+ b)m =
m∑
n=0

n!(m− n)!

m!
anbm−n.

The formula is proved by computing derivatives and applying Taylor’s for-
mula.

Exercise: use this formula with α = 1/2 to obtain formula (1).

Example 2.

Log (1 + z) = z − z2/2 + z3/3− z4/4 + . . . =
∞∑
n=1

(−1)m−1zn/n.

Example 3. Evaluate the integral in the form of a series:

I =
∫ 1

0

Log (1 + x)

x
dx.

First you should check that this integral is convergent. Since Log (1 + z)
equals 0 at z = 0, zero is a removable singularity, and the function is in
fact continuous on [0, 1]. Using the series in Example 2, and integrating
term-by-term, we obtain

I = 1− 1/4 + 1/9− 1/36 + . . . =
∞∑
n=1

(−1)n−1

n2
.

I will explain in a later lecture how to find the sum of this series explicitly.
See also the text on Bernoulli numbers.

Example 4. Length of an ellipse. An ellipse can be described by the
equation

x2

a2
+
y2

b2
= 1.
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A parametrization is obtained if we put

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

The formula for the length of a curve from Calculus gives the length as∫ 2π

0

√
(x′)2 + (y′)2dt =

∫ 2π

0

√
a2 sin2 t+ b2 cos2 tdt.

We may assume without loss of generality that b ≥ a. The expression under
the integral can be transformed as√

b2 − (b2 − a2) sin2 t = b
√

2− e2 sin2 t,

where e =
√
b2 − a2/b is called the eccentricity. The quantities b (the length

of the larger semi-axis) and the eccentricity describe the size and the shape
of the ellipse.

It is sufficient to find the length of the arc of the ellipse in the first
quadrant, because the ellipse consists of four such arcs of equal lengths.

Thus we need to evaluate the integral∫ π/2

0

√
1− e2 sin2 tdt,

which gives the length of 1/4 of the ellipse whose larger semi-axis is 1.
There is no closed form expression using only elementary functions and

constants related to them, like e and π. However there is the following series
expansion:∫ π/2

0

√
1− e2 sin2 θ dθ =

π

2

(
1− 1

2 · 2
e2 − 1 · 1 · 3

2 · 2 · 4 · 4
e4 − 1 · 1 · 3 · 3 · 5

2 · 2 · 4 · 4 · 6 · 6
e6 − . . .

)

=
π

2

(
1− 1

2 · 2
e2 −

∞∑
n=2

(2n− 1)!!(2n− 3)!!

((2n)!!)2
e2n
)
.

Sketch of the proof. First, denote e2 sin2 θ by x and use the binomial
formula:

(1− x)1/2 = 1− 1

2
x−

∞∑
n=2

(2n− 3)!!

2nn!
xn.

Second, ∫ π/2

0
sin2n θ dθ =

π

2
2−2n

(
2n

n

)
.
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The last integral is computed by the residues. This is one of our standard
integrals. Do this!

Besides computing integrals, Newton claimed that he can “solve any dif-
ferential equation”. Probably he meant the following: Suppose that a differ-
ential equation with an initial condition is given

y(m) = F (x, y, y′, . . . , y(m−1)), y(0) = c0, y
′(0) = c1, . . . , y

(m−1)(0) = cm−1.

Then one can compute

y(m)(0) = F (0, c0, c1, . . . , cm−1),

and all other derivative one-by-one by differentiating the equation, plugging
x = 0 and using derivatives that are already computed. Then use Taylor’s
formula to obtain a solution in the form of a power series.

Example 5. Obtain the power series for sin z and cos z by solving the
differential equation

y′′ + y = 0

with initial conditions y(0) = 0, y′(0) = 1 for sine, and y(0) = 1, y(0) = 0
for cosine.

Example 6. Airy’s differential equation Consider the following differ-
ential equation with initial conditions:

y′′ = xy, y(0) = 1, y′(0) = 0.

Its solutions are not elementary functions, so power series (or integrals) are
essentially he only ways to represent solutions.

Substitute the series

y(x) =
∞∑
n=0

anx
n, a0 = 1, a1 = 0.

We obtain

y′′(z) =
∞∑
n=0

n(n− 1)anx
n−2.

The terms with n = 0 and n = 1 are absent, so we can write

y′′(x) =
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n,
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where we “shifted the index”s, that is replaced n by n + 2 in the sum. For
the RHS we have

xy(x) =
∞∑
n=0

anx
n+1 =

∞∑
n=1

an−1x
n.

Now for the left and right hand sides to be equal, their coefficients have to
be equal, so we obtain

(n+ 2)(n+ 1)an+2 = an−1, n = 1, 2, 3, . . . .

Since a1 = 0, we have a4 = a7 = a10 = . . . = 0. Now RHS has no constant
term, and we conclude that a2 = 0. Then a5 = a8 = a11 = . . . = 0. So the
series contains only terms with xn where n is divisible by 3. Then from the
recurrent relation we find:

a0 = 1, a3 =
1

2.3
, a6 =

1

2.3.5.6
, a9 =

1

2.3.5.6.8.9
, . . . .

Exercise. Obtain a power series solution of the same equation with initial
conditions y(0) = 0, y′(0) = 1. Find the radii of convergence of both solu-
tions.
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