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Linear 2-nd order ODE on the Riemann sphere

w ′′ + p(z)w ′ + q(z)w = 0,

where p, q are meromorphic. Singular points are poles of p, q. A
singular point a is regular if there is a pair of solutions

wj(z) = (z − a)ρjgj(z), gj holomorphic at a, gj(a) 6= 0,

or w2(z) = cw1(z) log(z − a) + (z − a)ρ2g2(z).
The numbers ρ1, ρ2 are local exponents.
A singularity is regular if and only if the orders of poles of p and q
are at most 1 and 2, respectively. An equation whose all
singularities are regular is called Fuchsian. Prescribing the
singularities and exponents ion the Riemann sphere determines the
equation up to n − 3 parameters which are called accessory
parameters. So an equation with at most 3 singularities has no
accessory parameters.



Introduction

Lamé equation is a second order linear ODE with 4 regular
singularities, and the Riemann scheme e1 e2 e3 ∞

0 0 0 −m/2; x
1/2 1/2 1/2 (m + 1)/2

 ,

where m ≥ 0 is an integer. By a change of the independent
variable it can be rewritten as an equation on a torus with single
singularity with trivial local monodromy. It has one accessory
parameter which makes it the simplest Fuchsian equation, after the
hypergeometric one.



The preceding five chapters have been occupied with the
discussion of functions which belong to what may be generally
described as the hypergeometric type, and many simple properties
of these functions are now well known.
In the present chapter we enter upon a region of Analysis which lies
beyond this, and which is, as yet, only very imperfectly explored.

(E. T. Whittaker and G. N. Watson, A course of modern analysis,
1927 edition, introduction to Ch. XIX.)

It was discovered by Gabriel Lamé in 18391 when separating
variables in the Laplace equation in the ellipsoidal coordinates
in R3. Lamé functions play the same role for ellipsoidal coordinates
as Legendre’s functions for spherical coordinates.
Lamé equation was studied much in 19th and 20th centuries,
mainly for the case when all parameters are real.

1For historical perspective, 1838: coronation of Queen Victoria, 1840:
abolition of slave srade in UK



Gabriel Lamé (1795–1870)



Elliptic curve form of the Lamé equation

Elliptic curve in the form of Weierstrass:

u2 = 4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3),

g3
2 − 27g2

3 6= 0.

Lamé equation of degree m with parameters (λ, g2, g3) on this
elliptic curve is((

u
d

dx

)2

−m(m + 1)x − λ

)
w = 0

This is a linear ODE on a torus with respect to a function w , with
one regular singularity at ∞. λ is called the accessory parameter.



Two other forms
To obtain a Lamé equation on the sphere, we just open
parentheses in (ud/dx)2 and insert the expression of u:

w ′′ +
1

2

(
3∑

k=1

1

x − ej

)
w ′ =

m(m + 1)x + λ

4(x − e1)(x − e2)(x − e3)
w .

This corresponds to the Riemann scheme written in the beginning.
Elliptic functions form of the Lamé equation
is obtained by the change of the independent variables in the
previous forms: x = ℘(z), u = ℘′(z), so W (z) = w(℘(z)).

W ′′ − (m(m + 1)℘+ λ)W = 0

Here ℘ is the Weierstrass function of the lattice Λ with invariants

g2 = 60
∑

ω∈Λ\{0}

ω−4, g3 = 140
∑

ω∈Λ\{0}

ω−6.



Changing x to x/k, k ∈ C∗ we obtain a Lamé equation with
parameters

(kλ, k2g2, k
3g3), k ∈ C∗

Such equations are called equivalent, and the set of equivalence
classes is the moduli space for Lamé equations Lamem.
It is a weighted projective space P(1, 2, 3) from which the curve
g3

2 − 27g2
3 = 0 is deleted. Since the function

J =
g3

2

g3
2 − 27g2

3

is homogeneous, it defines a map πm : Lamem → CJ which is
called the forgetful map. The complex plane CJ is the moduli
space of elliptic curves.



A Lamé function

is a non-trivial solution w such that w2 is a polynomial (or
W 2 = w2 ◦ ℘ is an even elliptic function). The degree of this
polynomial must be m. If a Lamé function exists, it is unique up to
a constant factor. It exists iff a polynomial equation holds

Fm(λ, g2, g3) = 0

This polynomial is monic in λ and quasi-homogeneous with
weights (1, 2, 3) so we can factor by the C∗ action

(λ, g2, g3) 7→ (kλ, k2g2, k
3g3),

and obtain a curve in Lamem whose normalization is an (abstract)
Riemann surface Lm, the moduli space of Lamé functions.



Singularities in C of Lamé’s equation in algebraic form are e1, e2, e3,

4x2 − g2x − g3 = 4(x − e1)(x − e2)(x − e3)

with local exponents (0, 1/2). So Lamé functions are of the form:

Q(x), Q(x)
√

(x − ei )(x − ej), m even,

or

Q(x)
√
x − ei , Q(x)

√
(x − e1)(x − e2)(x − e3), m odd,

where Q is a polynomial. This suggests that for every m ≥ 2, Lm

consists of at least two components. We call LI
m the part which is

invariant under permutations of e1, e2, e3 and the rest is LII
m.



We determine topology of Lm (number of connected
components, their genera and numbers of punctures).

The language of orbifolds will be convenient.
An orbifold is a compact Riemann surface S equipped with a
function n : S → N ∪ {∞} which equals 1 at all points except
finitely many.
Orbifold Euler characteristic is

χO = 2− 2g −
∑
z

(
1− 1

n(z)

)
,

where g is the genus.
A ramified covering ψ : S1 → S2 is called an orbifold map if
n2(f (z)) divides n1(z) degz f , and it is called an orbifold covering if

n2(f (z)) = n1(z) degz f for all z ∈ S1.



Notation:

d I
m :=

{
m/2 + 1, m even
(m − 1)/2, m odd

d II
m := 3dm/2e.

These are the degrees of the forgetful maps.

ε0 := 0, if m ≡ 1 (mod 3), and 1 otherwise

ε1 := 0, if m ∈ {1, 2} (mod 4), and 1 otherwise

In other words, ε0 = 0 iff d I
m is divisible by 3, and ε1 = 0 iff d I

m is
even.



Theorem 1. For m ≥ 2, Lm has two components, LI
m and LII

m.
They have a natural orbifold structure with ε0 points of order 3 in
LI
m, and one point of order 2 which belongs to LI when ε1 = 1 and

to LII
m otherwise.

Component I has d I
m punctures and component II has

2d II
m/3 = 2dm/2e punctures.

The degrees of forgetful maps are d I
m and d II

m.
The orbifold Euler characteristics are

χO(LI
m) = −(d I

m)2/6, χO(LII
m) = −(d II

m)2/18.

For m = 0 there is only the first component and for m = 1 only
the second component. So Lm is connected for m ∈ {0, 1}.

That there are at least two components is well-known. The new
result is that there are exactly two, and their Euler characteristics.



Corollary 1. The polynomial Fm factors into two irreducible
factors in C(λ, g2, g3)

Theorem 2. All singular points of irreducible components of the
surface Fm = 0 are contained in the lines (0, t, 0) and (0, 0, t).

To prove this, we find non-singular curves H
j
m ⊂ P2 and orbifold

coverings ΨK
m : H

j
m → L

K
m. Here L

K
m is the compactification

obtained by filling the punctures and assigning an appropriate
orbifold structure at the punctures. Theorem 1 is used to prove

non-singularity of H
j
m.



Let Fm = F I
mF

II
m and let D I , D II be discriminants of F I

m, F
II
m with

respect to λ. These are quasi-homogeneous polynomials, so
equations DK

m = 0 are equivalent to polynomial equations
CK
m (J) = 0 in one variable. These CK

m are called Cohn’s
polynomials.

Corollary 2. (conjectured by Robert Meier)
degC I

m = b(d2
m − dm + 4)/6c, d = d I

m and
degC II

m = d II
m(d II

m − 1)/2.

Since we know the genus of LK
m (Theorem 1), we can find

ramification of the forgetful map π : Lm → CJ . Degree of CK
m

differs from this ramification by contribution from singular points
of FK

m = 0, and this contribution is obtained from Theorem 2.



Method

Let w be a Lamé function. Then a second linearly independent
solution of the same equation is w

∫
dx/(uw2), so their ratio

f =

∫
dx

u(x)w2(x)
(u2 = 4x3 − g2x − g3)

is an Abelian integral. The differential df has a single zero of order
2m and m double poles with vanishing residues.
Conversely, if g(x)dx is an Abelian differential on an elliptic curve
with a single zero at the origin2 of multiplicity 2m and m double
poles with vanishing residues, then g = 1/(uw2) where w is a
Lamé function. Such differentials on elliptic curves are called
translation structures. They are defined up to proportionality.

2The “origin” is a neutral point of the elliptic curve. It corresponds to
x = ∞ in Weierstrass representation



So we have a 1− 1 correspondence between Lamé
functions and translation structures.

To study translation structures we pull back the Euclidean metric
from C to our elliptic curve via f , so that f becomes the
developing map of the resulting metric. This metric is flat, has one
conic singularity with angle 2π(2m + 1) at the origin, and m simple
poles.

A pole of a flat metric is a point whose neighborhood is isometric
to {z : R < |z | ≤ ∞} ⊂ C∪ {∞} with flat metric, for some R > 0.

We have a 1− 1 correspondence between the classes of
Lamé functions and the classes of such metrics on elliptic
curves. (Equivalence relation of the metrics is proportionality. In
terms of the developing map, f1 ∼ f2 if f1 = Af2 + B, A 6= 0.)



Main technical result:

Theorem. Every flat singular torus with one conic point with angle
(2π)(2m+ 1) can be cut into two congruent flat singular triangles.

“Congruent” means corresponding by an isometry preserving
orientation.
A flat singular triangle is a triple (∆, {aj}, f ), where D is a closed
disk, aj are three (distinct) boundary points, and f is a
meromorphic function ∆→ C which is locally univalent at all
points of ∆ except aj , has conic singularities at aj ,

f (z) = f (aj) + (z − aj)
αjhj(z), hj analytic, hj(aj) 6= 0

f (aj) 6=∞, and the three arcs (ai , ai+1) of ∂∆ are mapped into
lines `j (which may coincide).
The number παj > 0 is called the angle at the corner aj .



Flat singular triangles (∆1, {aj}, f1) and (∆2, {a′j}, f2) are
equivalent if there is a conformal homeomorphism
φ : ∆1 → ∆2, φ(aj) = a′j , and

f2 = Af1 ◦ φ+ B, A 6= 0.

To visualize, draw three lines `j in the plane, not necessarily
distinct, choose three distinct points ai ∈ `j ∩ `k , and mark the
angles at these points with little arcs (the angles are positive and
can be arbitrarily large).
The corners aj are enumerated according to the positive
orientation of ∂∆.

We need uniqueness for this representation, at least for
generic tori. To obtain this we impose an additional
condition.



A flat singular triangle is called balanced if

αi ≤ αj + αk

for all permutations (i , j , k), and marginal if we have an equality.
One can always decompose our torus into two congruent balanced
triangles. Tis decomposition is unique, unless the triangles are
marginal, in which case there are at most two such decompositions.



Description of balanced triangles

a)

a a

a aa

a

1

1

3
3

2

2

b)

“Primitive” triangles with angle sums π and 3π The first is

balanced iff αj ≤ π/2. The second is balanced iff α2 ≥ π/2.

All other balanced triangles can be obtained from these two by
gluing half-planes to the sides (F. Klein).



a) b) c)

d)

e)

f )

All types of balanced triangles with angle sum 5π (m = 2)



We abbreviate “balanced flat singular triangle” as BFT.

Let T be a BFT and T ′ its congruent copy. We glue them by
identifying the pairs of equal sides according to the
orientation-reversing isometry. The resulting torus is called Φ(T ).
All three corners of T are glued into one point, the conic
singularity of Φ(T ).

When two different triangles give the same torus?
a) when they differ by cyclic permutation of corners aj , or
b) they are marginal, and are reflections of each other.



a1 a2

a3a4

a1

a1 a1

a2

a2

a2

a3

a3
a3

a4

a4

a4

=

=

Non-uniqueness of decomposition of a torus into marginal triangles
for m = 0 and m = 1 (Case b). For triangles with the angle sum π

or 3π, marginal means that the largest angle is π/2 or 3π/2.



Complex analytic structure on the space Tm of BFT

A complex local coordinate is the ratio

zi ,j ,k =
f (ai )− f (aj)

f (ak)− f (aj)

There are 6 such coordinates and they are related by
transformations of the anharmonic group:

z , 1/z , 1− z , 1− 1/z , 1/(1− z), z/(z − 1)

Coordinates zi ,j ,k are ratios of the periods of the Abelian
differential dx/(uw2) corresponding to a Lamé function.



Factoring the space Tm of BFT’s with the angle sum π(2m + 1) by
equivalences a) and b) we obtain the space T∗m. It inherits the
complex analytic structure from Tm. Our main result is

Theorem 3. Φ : T∗m → Lm is a conformal homeomorphism.

Roughly speaking, every flat singular torus can be broken into two
congruent BFT, and this decomposition is unique modulo
equivalences a) and b).

The space T∗m has a nice partition into open 2- and 1- cells and
points, which permits to compute the topological characteristics
of Lm. To explain this partition, we study BFT.



Some properties of BFT.
1. The sum of the angles is an odd multiple of π. The angles are
παj where either all αj are integers or none of them is an integer.
2. For non-integer αj , triangle is determined by the angles, and
any triple of positive non-integer αj whose sum is odd can occur.
3. For integer angles, all triangles are balanced. Triangle is
determined by the angles and one real parameter (for example a
ratio zi ,j ,k introduced above). All balanced integer triples whose
sum is odd can occur as αj .
4. For BFT, each side contains at most one pole, and

2n + k = m,

where n is the number of interior poles, k is the number of poles
on the sides, and π(2m + 1) is the sum of the angles.



The two components LI
m, L

II
m are determined by the value of k: for

example, when m is even then k = 0 on the first component and
k = 2 on the second.

To visualize 2 and 3, consider the space of angles Am. First we
define the triangle

∆m = {α ∈ R3 :
3∑
1

αj = 2m + 1, 0 < αi ≤ αj + αk},

then remove from it all lines αj = k, for integer k , and then add all
integer points (where all αj are integers). The resulting set is the
space of angles Am.



Space of angles A3 and 4 components of T3 (Their “nerves” are
shown). The three components on the right-hand side are

identified when we pass to the factor T∗.



We have a map ψ : Tm → Am which to every triangle puts into
correspondence its vector of angles (divided by π). This map is
1− 1 on the set of triangles with angles non-integer multiples of π.
Preimage of an integer point in Am consists of three open
intervals.

This defines a natural partition of Tm into open disks and intervals.
Open disks are preimages of components of interior of Am, intervals
are of two types: inner edges are components of preimages of
integer points in An, and boundary edges are preimages of the
intervals Am ∩ ∂∆m. They correspond to marginal triangles.

This partition reduces calculation of Euler’s characteristics and
numbers of punctures to combinatorics.



Proof of Maier’s conjecture on degrees of Cohn’s
polynomials

Once we know the topology of Lm and the degree of the forgetful
map Lm → CJ , ramification is obtained by the Riemann-Hurwitz
formula. Hexagonal (J = 0) and square (J = 1) tori require special
investigation since our curve might be singular at those points.
This investigation is based on the following

Lemma. Let (ai ,j)
n
i ,j=1 be a matrix with ai ,i+1 > 0, ai+2,i > 0, the

rest of the entries are 0. Then the characteristic polynomial has
the form λkP(λ3), where k ∈ {0, 1, 2} and P is a real polynomial
with all roots negative and distinct.

This lemma, proved by V. Tarasov, is a generalization of the
classical result on Jacobi matrices.



Non-singular model for moduli space of Lamé functions

Write Lamé equation in “Legendre’s form”

Py ′′ +
1

2
P ′y ′ = (m(m + 1)z + B)y , P(z) = 4z(z − 1)(z − a).

Here a is the parameter of the torus, and B is accessory parameter.
Then the existence condition of Lamé function takes the form

Hm(a,B) = 0,

where H is a polynomial, and this curve defines a non-singular
model of our moduli space.



Application to spherical metrics

Every Riemann surface has a complete Riemannian metric of
constant curvature 0, 1 or −1; it is unique up to scaling in the first
case, and unique in the other two cases.
For curvature 0 or −1, this result has been extended to metrics
with conic singularities by E. Picard (1889). The case of positive
curvature remains wide open.

The simplest case is that of a torus S with one conic singularity
with angle 2πα, α > 1. Developing map f : L→ C of such a
metric is a ratio of two linearly independent solutions of a Lamé
equation with unitarizable projective monodromy. So the moduli
space Sph1,1(α) of such metrics can be identified with a subset of
the moduli space of Lamé equations P(1, 2, 3).



A Riemannian metric defines a conformal structure, so we have the
forgetful map

π : Sph1,1(α)→ CJ ,

where CJ is the moduli space of elliptic curves.
The map π is surjective and proper, for all α > 0, except odd
integers (Chang-Shou Lin, G. Mondello and D. Panov), but
Sph1,1(2m + 1) has a boundary in P(1, 2, 3). It is a real-analytic
surface, not a complex curve, and the forgetful map restricted to
Sph1,1(2m + 1) is not holomorphic.
It turns out that this boundary is a subset of L (the set of those
Lamé equations which have Lamé functions as solutions) and this
subset is characterized by the property that the periods of the
corresponding Abelian differential have real ratio.
In our correspondence Φ : Tm → Lm the boundary
∂Sph1,1(2m + 1) corresponds to triangles with all angles integer
multiples of π.



Lin–Wang curves

The components of ∂Sph1,1(2m + 1) are called Lin–Wang curves,
and their union is denoted by LWm. So we have

∂Sph1,1(2m + 1) = LWm ⊂ Lm ⊂ P(1, 2, 3).

Using our parametrization of Lm we obtain

Theorem. Lin–Wang curves are real analytic (biholomorphic
images of open intervals), and there are m(m + 1)/2 of them.

Our parametrization also permits to make pictures of projections of
LWm on the J-plane.



Unsolved problems

1. What are the critical points of the forgetful map? Are they all
simple? Critical values of forgetful maps are zeros if Cohn’s
polynomials; they are all algebraic since Cohn’s polynomials have
rational coefficients. Are zeros of Cohn’s polynomials simple,
except for J = 0?

2. Are forgetful maps of spherical surfaces with conic singularities
open? At least for tori with one singularity?

3. Are forgetful maps of spherical surfaces with conic singularities
finite-to-one? This is known for tori with four singularities at the
points of order 2.
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m = 1. Projection of Sph1,1(3) is shaded.



0

m = 2. The boundary curves represent the projection of LW2, and
the shaded region is the hypothetical projection of Sph1,1(5). It is

not known that whether the forgetful map is open on
Sph1,1(2m + 1).



m = 3



Magnification of detail of the previous picture (near the point
which looks there as a triple point).
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