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Every surface can be equipped with a Riemannian metric
of constant curvature −1, 0 or 1. This metric is unique in
each conformal class, except for curvature 0 when it is
unique up to scaling.

This 19th century result is equivalent to the Uniformization
Theorem.
In this talk we consider only compact orientable surfaces. They are
classified by genus g ≥ 0.
What if we allow simplest singularities of the metric?



Conic singularities

Let D be a sector {z : |z | < r , 0 < arg z < 2πα} equipped with a
metric of constant curvature −1, 0, or 1,

ds =
2|dz |

1 + κ|z |2
, κ ∈ {−1, 0, 1}.

Gluing the straight boundary segments isometrically we obtain a
neighborhood of a conic singularity with conic angle 2πα > 0.
(This angle can be arbitrarily large!)
Alternative definition: the length element is

ds =
2α|z |α−1|dz |

1 + κ|z |2α
, κ ∈ {−1, 0, 1},

where z is a conformal coordinate, and κ is the curvature.



Case of non-positive curvature

The Gauss–Bonnet theorem implies

χ(S) +
n∑

j=1

(αj − 1) =
1

2π
(total integral curvature)

so the expression in the LHS must have the same sign as the
curvature κ.
If κ ≤ 0, this is the only obstruction, and if it is satisfied the metric
with given n and αj is unique (up to a constant multiple when
κ = 0) in each conformal class.
This is essentially due to Picard, who devoted to this result 4 long
papers in 1893-1931. Proof in modern language was given by M.
Heins (1962) and M. Troyanov (1991).
These authors use non-linear PDE and potential theory.



Simple example

A flat metric on the sphere with conic angles αj exists if and only if

2 +
n∑
1

(αj − 1) = 0

and is unique up to a constant multiple.
If all singularities lie on a circle in the sphere, this circle breaks the
sphere into two flat polygons, and the result in this case is nothing
but the Schwarz–Christoffel formula.

From now on we consider spherical metrics. For them the problem
is wide open.



Moduli spaces of metrics

The first problem is to describe the set of such metrics on a
(topological) surface of given genus, with prescribed number of
singularities and angles at them.

For κ = 1, the set of all such metrics is denoted by
Sphg ,n(α1, . . . , αn). It has a natural metric: the bi-Lipschitz
distance.

One wants to know when this space is not empty, how many
connected components it has, what is the topology of those
components, and whether these components have any additional
natural structure.



Forgetful map

A Riemannian metric defines a conformal structure, and we have
the forgetful map

π : Sphg ,n(α1, . . . , αn)→ Mod(g , n),

where Mod(g , n) is the set of conformal structures on surfaces of
genus g with n marked points.

The second (much more difficult) problem is to establish the
properties of the forgetful map: Is it surjective? If not, how to
describe its image?
How many preimages can a point have? In other words, how many
such metrics exist in a given conformal class?



Developing map

If S is a surface with a Riemannian metric of constant curvature,
with conic singularities at a1, . . . , an, then every smooth point in S
has a neighborhood which is isometric to a disk in the sphere,
plane or hyperbolic plane. This map is conformal, thus analytic,
and we have the multi-valued analytic map from S\{a1, . . . , an} to
the hyperbolic plane, or to the Euclidean plane, or to the standard
sphere, which is called the developing map.
This developing map f is a linearly-polymorphic function:

fγ = φγ ◦ f

where γ 7→ φγ is a monodromy representation of the fundamental
group of the punctured surface in the group of linear-fractional
transformations. These linear-fractional transformations are
hyperbolic (Euclidean, spherical) isometries.



Connection with linear (Fuchsian) ODE

As a linearly-polymorphic function, developing map has a
single-valued Schwarzian derivative

f ′′′

f ′
− 3

2

(
f ′′

f ′

)
= R.

At the conic singularities with angles αj , R has double poles with
principal parts (α2

j − 1)/(2z2). Then f is a ratio of two linearly
independent solutions f = w1/w2 of a Fuchsian equation

w ′′ + (R/2)w = 0,

where the highest order terms of R at the poles are defined by the
angles. A solution of this equation will define a developing map of
a spherical metric if the projective monodromy group is conjugate
to a subgroup of PSU(2). (For the other two cases, it is a subgroup
of the group of Euclidean or hyperbolic motions SL(2,R)).



Analogy with work of Klein and Poincare

The coefficient R is determined by the singularities and angles, and
n − 3 accessory parameters.
When there are no singularities, the existence and uniqueness of a
metric of constant curvature is equivalent to the Uniformization
theorem.
In their early attempts to prove the Uniformization theorem, Klein
and Poincare were trying to find accessory parameters of a
Fuchsian equation so that the projective monodromy is conjugate
to a subgroup of PSL(2).
They encountered serious difficulties, and this approach to the
Uniformization theorem has been completed only recently.
The first proofs of the Uniformization theorem were obtained by
using the



Connection with non-linear PDE

If ρ(z)|dz | = eu(z)|dz | is a length element of the metric of
constant curvature κ expressed in a conformal coordinate, then

∆u + κe2u = 2π
n∑

j=1

(αj − 1)δaj .

which is the simplest representative of of a class of mean filed
equations important for mathematical physics. It was studied
much for the most important case of the torus with one singularity
by Chang-Shou Lin and his school.



What is known?

A. When Sphg ,n(α1, . . . , αn) 6= ∅? For g > 0, the Gauss-Bonnet
inequality

χ(S) +
n∑

j=1

(αj − 1) > 0

is necessary and sufficient. For g = 0, we have an additional
restriction:

d1(α− 1,Zn
o) ≥ 1, (1)

where d1 is the `1-distance, and Zn
o is the set of integer points

whose sum of coordinates is odd. (Mondello and Panov, 2016).
When this inequality is strict, and the Gauss–Bonnet inequality
holds, then Sphg ,n(α1, . . . , αn) 6= ∅.



The case of equality in (1) is special. Monodromy of the
developing map in this case is co-axial which means isomorphic to
a subgroup of the unit circle.

Additional restrictions on the angles of a metric on the sphere
apply in this case, and a complete set of conditions was found by
Eremenko in 2020.

In the case of co-axial monodromy, each metric with developing
map f comes with a continuous family of metrics whose developing
maps are of the form φ ◦ f , where φ is a conformal automorphism
of the sphere. Such metrics are called projectively equivalent.
This family is of real dimension 1 when the monodromy is a
non-trivial subgroup of the unit circle and of real dimension 3 for a
trivial group.



When the forgetful map is surjective?
A sufficient condition is due to Bartolucci, de Marchis and
Malchiodi (2011):
If g > 0, αj > 1, 1 ≤ j ≤ n,

χ(S) +
n∑

j=1

(αj − 1) > 2 min{α1, . . . , αn, 1}

and
n∑

j=1

±αj 6= 2k − 2 + n + 2g (2)

for every choice of signs and every k ∈ Z≥0, then the forgetful map
is surjective.
Mondello and Panov (2020) proved that under the condition (2)
the forgetful map is proper (and thus surjective).
For example, for a torus with one singularity, the forgetful map is
proper and surjective if α1 is not an odd integer.
When α1 is an odd integer, it is never proper, and for α1 = 3 it is
not surjective.



This was generalized by C.-C. Chen and C.-S. Lin, whose result
covers the case g = 0. Moreover, he computed the topological
degree of the forgetful map. Let

g(x) = (1− x)n−χ(S)
n∏

n=1

(1− xαj )

= 1 + b1x
β1 + b2x

β2 + . . . .

If an integer k can be defined so that

2βk < χ(S) +
n∑

j=1

(αj − 1) < 2βk+1

then the degree of the forgetful map is

d =
k∑

j=0

bj .



More known results
1. When S is the sphere, and all αj ∈ (0, 1) then the necessary and
sufficient condition for existence of the metric is

0 < 2 +
∑
j

(αj − 1) < 2 min{αj}

and the metric with prescribed angles is unique (F. Luo and G.
Tian, 1992).

2. When S is the sphere, and all but at most 3 of the αj are
integers, then the necessary and sufficient condition for existence
of the metric is

cos2 πα1+cos2 πα2+cos2 πα3+2(−1)σ cosπα1 cosπα2 cosπα2 < 1,

σ =
n∑

j=4

(αj − 1),

where it is assumed that α4 . . . , αn are integers. Forgetful map is
holomorphic in this case and has degree is α4 · . . . · αn. (Eremenko
and Tarasov, 2018).



3. If S is a torus with one singularity with angle 6π, then the
forgetful map is injective, but not surjective, and its image is
explicitly described: it is not dense in the plane Mod1,1 (C.-S. Lin
and Wang, 2010, simpler proof: Bergweiler and Eremenko, 2016).
These are the only cases when the valence of the forgetful map is
known.

4. For tori with one singularity and spheres with 4 singularities, it
is known that the forgetful map is finite-to-one, except in the case
of coaxial monodromy (Eremenko, 2019). More precisely, for each
conformal structure, there are finitely many projective equivalence
classes of metrics. The proof is not constructive and gives no
explicit upper estimate.



Orbifold notation

In the rest of the talk I describe the results on Problem I
(description of the moduli space) in the simplest case of a torus
with one singularity.

We will describe Sph1,1(α) (which is a surface). It is convenient to
use the notion of orbifold.
An 2-dimensional orbifold is as compact surface S equipped with a
function n : S → Z≥1 ∪ {+∞} such that n(x) = 1 for all but
finitely many points. n(x) =∞ is interpreted as a puncture. The
points where n(x) > 1 are called orbifold points. The orbifold
Euler characteristic is defined as

χO = χ(S)−
∑(

1− 1

n(x)

)
,

where χ(S) = 2− 2g is the usual Euler characteristic.



Main new results

Description of Sph1,1(α) where α is not an odd integer.
Let m = [(α + 1)/2], so that 2m is the closest even integer to α.
Then Sph1,1(α) is a connected surface of genus
[(m2 − 6m + 12)/12] with m punctures.

It has a natural orbifold structure with one orbifold point of order 3
when d1(α, 6Z) > 1 and one orbifold point of order 2 when
d1(α, 2Z) > 1. The orbifold Euler characteristic is

−m2/6.

When α = 2m is an even integer, Sph1,1(α) has a natural
conformal structure such that the forgetful map is complex
analytic. The Riemann surface Sph1,1(α) is a Belyi curve.



Description of Sph1,1(2m + 1) for m ∈ Z>0.
Sph1,1(2m + 1) is a 3-dimensional manifold which consists of
bm(m + 1)/6c connected components. Each component is
homeomorphic D × R, where D is an open disk.

Each projective equivalence class contains one metric which is
invariant with respect to conformal involution of the torus. The
space of equivalence classes has a natural orbifold structure: it
consists of bm(m + 1)/6c disks. When m ≡ 1 (mod 3), one of
these disks has an orbifold point of order 3, and there are no other
orbifold points.



The method of the proof consists in partition of the spherical torus
with one conic singularity into two spherical triangles.
A spherical triangle with angles (α1, α2, α3) is called balanced if

αi ≤ αi + αk

for all permutations (i , j , k) of (1, 2, 3). It is strictly balanced if all
these inequalities are strict, and marginal if at least one of them is
an equality.
Theorem. Every spherical torus with a conic singularity with angle
α > 1 is a union of two congruent balanced spherical triangles with
disjoint interiors and angles α1, α2, α3 such that

α = 2(α1 + α2 + α3).

This decomposition is unique if the triangles are strictly balanced,
and there are at most two such decompositions when they are
marginal.



Example: a flat torus with no singularity (α = 1):



Angles of spherical triangles
1. If three positive numbers α1, α2, α3 are not integers, then there
is a spherical triangle with angles παj iff

cos2 πα1 + cos2 πα2 + cos2 πα3 + 2 cosπα1 cosπα2 cosπα2 < 1.

A triangle with such angles is unique.
2. If exactly one, say αi is an integer, then a triangle with angles
(πα1, πα2, πα3) exists iff wither αj + αk or |αj − αk | is an integer
m of the opposite parity to αi , and

m ≤ αi − 1.

For any such angles, a one-parametric family of triangles with
these angles exists.
3. If two of the (α1, α2, α3) are integers, then all three are integers
and a triangle with angles παj exists iff α1 + α2 + α3 is odd, and

max{α2, α2, α3} ≤ (α1 + α2 + α3 − 1)/2.



Condition for non-integer αj can be rewritten as

cos2 πα1 + cos2 πα2 + cos2 πα3 + 2 cosπα1 cosπα2 cosπα2

= cosπ
α1 + α2 + α3

2
cosπ

α1 + α2 − α1

2

× cosπ
α1 − α2 + α3

2
cosπ

−α1 + α2 + α3

2
< 0.

For the fixed sum α1 + α2 + α3 this defines a set consisting of
triangles which are shaded in the following pictures.





Embedding to the moduli spaces of Lamé equations

Developing map f of a spherical torus with one conic singularity is
a ratio of two linearly independent solutions of Lamé equation:
f = w1/w2

w ′′ =

(
α2 − 1

4
℘+ λ

)
w ,

where ℘ is the Weierstrass function of the torus, and λ is a
complex accessory parameter.
This Lamé equation defines a developing map of a spherical torus
if and only if the projective monodromy group is a subgroup of
PSU(2).
Lamé equation depends on parameters α, g2, g3, λ, where g2 and
g3 are the lattice invariants:

g2 = 60
∑
ω 6=0

ω−4, g3 = 140
∑
ω 6=0

ω−6,

where the summation is over elements of the lattice.



We fix real α and call two Lamé equations equivalent if they are
obtained from each other by the change of the independent
variable z 7→ kz (scaling of the lattice).
This gives

(g2, g3, λ) ∼ (k4g2, k
6g3, k

2λ).

The set of equivalence classes is called the moduli space of Lamé
equations. It is a weighed projective plane P(1, 2, 3).
The condition that the monodromy is in PSU(2) gives one complex
equation on λ and the parameter of the torus but this equation is
not complex analytic unless α is an even integer. So our moduli
spaces Sph1,1(α) are 2-dimensional surfaces in P(1, 2, 3).
When α is an even integer, Sph1,1(α) is an algebraic curve in
P(1, 2, 3).



These surfaces are properly embedded (have no boundary) except
for the case when α is an odd integer. This interesting case
corresponds to the classical Lamé equation

w ′′ = ((m(m + 1)℘+ λ)w , m ∈ Z≥1. (3)

which was studied by Lamé himself. A solution w of (3) is called a
Lamé function if w2 is a polynomial. Such a solution exists iff an
algebraic equation

Fm(g2, g3, λ) = 0

is satisfied. Here g2, g3 are the fundamental invariants of the
lattice associated to our torus. To each Lamé function an elliptic
differential of the second kind is: ω = w−2(z)dz . This differential
has vanishing residues, so it has two periods corresponding to the
generators of the homology group of the torus.



Let LWm be the set of Lamé equations which posses a Lamé
function w as a solution, such that the ratio of the periods of the
differential w−2dz is real. Then we have the following description
of the boundary of our moduli space:

∂Sph1,1(2m + 1) = LWm.

So the boundary of our real-analytic surface Sph1,1(2m + 1) is a
real analytic curve which belongs to a complex algebraic curve of
Lamé equations which possess a Lamé function.



The moduli space of Lamé functions

It is isomorphic to the space of pairs

Lm := (elliptic curve,Abelian differential),

where the differential has a single zero of multiplicity 2m at the
origin and all poles double, with zero residues.

Such differentials define a singular Euclidean metric on the torus,
with one conic singularity at the origin and several poles isometric
to {z : r < |z | <∞}.
A study of such singular flat metrics is possible with the same
methods that we employed for spherical metrics. The key fact is
that every flat singular torus with one conic singularity is the union
of two congruent flat singular triangles, and this decomposition is
almost unique.
This permits to describe the moduli space of Lamé functions.



Denote

d I
m =

{
m/2 + 1, m ≡ 0 (mod 2),
(m − 1)/2, m ≡ 1 (mod 2).

d II
m = 2dm/2e.

Theorem. When m ≥ 1, Lm is a Riemann surface which consists
of two connected components LI

m and LIIm.
It has a natural orbifold structure with one orbifold point of order 3
on LI

m when m 6≡ 1 (mod 3), and one orbifold point of order 2
which is in LI

m when m ∈ {2, 3} (mod 4) and in LII
m otherwise.

Component LIm has d I
m punctures, and component LII

m has 2d II
m/3

punctures. The orbifold Euler characteristics are

χO(LI
m) = −(d I

m)2/6, χO(LII
m) = −(d II

m)2/18.



Main unsolved questions.

1. Is the forgetful map open? This is unlikely in general, but
perhaps it is open for the case of tori with one singularity.

2. What is the maximum number of preimages under the forgetful
map? It is only known that it is finite, for tori with one singularity.
No upper estimate is known. It is conjectured that when α is not
an odd integer, the maximum valence is equal to its topological
degree which was computed by C. C. Chen and C. S. Lin.
The only case when the answer to this question is known is m = 1
when the forgetful map is injective.
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