First Exam Solutions

1. a) Writing z_1 and z_2 in trigonometric form $z_i = r_i e^{i\theta_i}$, we obtain

$$\operatorname{Re}(z_1\overline{z_2}) = \operatorname{Re}(r_1r_2(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))) = r_1r_2\cos(\theta_1 - \theta_2),$$

the dot product of z_1 and z_2 . Second solution: if $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ then

$$Re(z_1\overline{z_2}) = x_1x_2 + y_1y_2.$$

b) Let us compute for example the angle between z_1 and z_2 . We have

$$1 = |z_3|^2 = |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2}).$$

So $\text{Re}(z_1\overline{z_2}) = -1/2$, so the angle between z_1 and z_2 is $2\pi/3$. Another way is to write $-z_3 = z_1 + z_2$ and to apply Cosine Theorem to show that the angle between z_1 and z_2 is $2\pi/3$.

2. a) Parametrize this line as 1 + it, $-\infty < t < \infty$, then the image under $-z^2$ will have the parametrization

$$-1 - 2it + t^2$$

that is $x = t^2 - 1$, y = 2t, or $x = y^2/4 - 1$, which describes a parabola with vertex at the point -1, and branches going right.

- 3. a) For example u(x,y) = v(x,y) = x.
 - b) Compute the Laplacian of this product:

$$\Delta(uv) = u_{xx}v + 2u_{x}v_{x} + uv_{xx} + u_{yy}v + 2u_{y}v_{y} + uv_{yy}$$

$$= v\Delta u + u\Delta v + 2(u_{x}v_{x} + u_{y}v_{y})$$

$$= 2(u_{x}v_{x} - v_{x}u_{x}) = 0.$$

4. Let γ_1 and γ_2 be small circles about 0 and 3, oriented anticlockwise. To compute the integral over γ_1 , apply the Cauchy formula for the derivative to $f(z) = (\cos z)/(z-3)$:

$$\int_{\gamma_1} \frac{f(z)}{z^2} dz = 2\pi i f'(0) = -\frac{2\pi i}{9}.$$

Putting $g(z) = (\cos z)/z^2$ we obtain by the Cauchy formula

$$\int_{\gamma_2} \frac{g(z)}{z-3} dz = 2\pi i g(3) = \frac{2\pi i \cos 3}{9}.$$

If a curve γ makes m turns around 0 and n turns around 3 then the integral is equal to $2\pi i(n\cos 3 - m)/9$.

5. We have $f(z) = \sqrt{|z|} \exp(i(\text{Arg})z/2)$. A parametrization of the upper half of the unit circle from 1 to -1 is $z = e^{it}$, $0 \le t \le \pi$, so $dz = ie^{it}$, and our integral equals

$$\int_0^{\pi} \frac{ie^{it}}{e^{it/2}} dt = i \int_0^{\pi} e^{it/2} dt = 2(i-1).$$

6. The equation $\sin z = 2$ is equivalent to $e^{iz} - e^{-iz} = 4i$. Denote $e^{iz} = w$, then

$$w - w^{-1} = 4i$$
, $w^2 - 4iw - 1 = 0$, $w_{1,2} = 2i \pm i\sqrt{3}$.

For the first series we have

$$z_{1,k} = (1/i)\log((2+\sqrt{3})i) = \pi/2 + 2k\pi - i\log(2+\sqrt{3}), \quad k = 0, \pm 1, \pm 2, \dots$$

Similarly,

$$z_{2,k} = (1/i)\log((2-\sqrt{3})i) = \pi/2 + 2k\pi - i\log(2-\sqrt{3}), \quad k = 0, \pm 1, \pm 2, \dots$$

To make an accurate sketch, notice that $\text{Log}(2+\sqrt{3})$ and $\text{Log}(2-\sqrt{3})$ have opposite signs and equal absolute values, because $(2-\sqrt{3})(2+\sqrt{3})=1$.