Some answers and solutions to the practice problems

1. a) 1;b) 1; ¢) 6.

2. a) Let
eiz
J(z) = 22— 2iz—2
the poles are
21,2 = 1+ 1,

both in the upper half-plane. The formula for such integrals that we learned
gives
I = 2mi(res,, f(2) + res,, f(2)) .

Computing the residues, we obtain

j _27rsin1‘
e

b) This integral is actually equal to 0 since
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which can be seen by the change of the variable z — 1/x.
But the regular approach would be to integrate
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f(z) =

over the boundary of slit disks {z : |2|] < R, 0 < argz < 27}, where R is
large, compute the residue at —1, and use the value of
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which is easy to obtain by calculus.

c) Let f(z) = (1—e%*#)/z2. This has a simple pole at 0, while the function
in the original integral has removable singularity. Then we have

/Ooo de = ;Rep.v. /OO f(z)dz

2 oo

1



1
= §m' resg f(z) = 7.

3. —m2/12 (I solved this in class).
4. a) Let w = z — 3. Then
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b)
2sinme = 2%sin(r +7/2) = —2*sin(n/2)
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5. a) every integer is a removale singularity, oo is not isolated.
b) 7/2 + 7k is essential, for all integer k; oo is not isolated.
¢) mi + 2mwik is a simple pole for every integer k, oo not isolated.

6. a) 3; b) v2; ¢) 1.
7. a)
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8. e*(xsiny + ycosy).
9. a) yes; b) no; c) yes; d) no; e) no; f) yes.



