Some answers and solutions to the practice problems

1. a) 1 ; b) 1 ; c) 6 .
2. a) Let

$$
f(z)=\frac{e^{i z}}{z^{2}-2 i z-2} .
$$

the poles are

$$
z_{1,2}=i \pm 1
$$

both in the upper half-plane. The formula for such integrals that we learned gives

$$
I=2 \pi i\left(\operatorname{res}_{z_{1}} f(z)+\operatorname{res}_{z_{2}} f(z)\right)
$$

Computing the residues, we obtain

$$
I=-\frac{2 \pi \sin 1}{e} .
$$

b) This integral is actually equal to 0 since

$$
\int_{0}^{1} \frac{\log x}{(x+1)^{2}} d x=-\int_{1}^{\infty} \frac{\log x}{(x+1)^{2}} d x
$$

which can be seen by the change of the variable $x \mapsto 1 / x$.
But the regular approach would be to integrate

$$
f(z)=\frac{\log _{0}^{2} z}{(z+1)^{2}}
$$

over the boundary of slit disks $\{z:|z|<R, 0<\arg z<2 \pi\}$, where R is large, compute the residue at -1 , and use the value of

$$
\int_{0}^{\infty} \frac{d x}{(x+1)^{2}}=1
$$

which is easy to obtain by calculus.
c) Let $f(z)=\left(1-e^{2 i z}\right) / z^{2}$. This has a simple pole at 0 , while the function in the original integral has removable singularity. Then we have

$$
\int_{0}^{\infty} \frac{1-\cos (2 x)}{x^{2}} d x=\frac{1}{2} \operatorname{Re} p \cdot v \cdot \int_{-\infty}^{\infty} f(z) d z
$$

$$
=\frac{1}{2} \pi i \operatorname{res}_{0} f(z)=\pi .
$$

3. $-\pi^{2} / 12$ (I solved this in class).
4. a) Let $w=z-3$. Then

$$
\frac{1}{z-2}=\frac{1}{1+w}=w^{-1} \frac{1}{1+w^{-1}}=\sum_{0}^{\infty}(-1)^{n}(z-3)^{-n-1} .
$$

b)

$$
\begin{gathered}
z^{2} \sin \pi \frac{z+1}{z}=z^{2} \sin (\pi+\pi / z)=-z^{2} \sin (\pi / z) \\
=\sum_{0}^{\infty}(-1)^{n+1} \frac{\pi^{2 n+1}}{(2 n+1)!} z^{1-2 n}
\end{gathered}
$$

5. a) every integer is a removale singularity, ∞ is not isolated.
b) $\pi / 2+\pi k$ is essential, for all integer k; ∞ is not isolated.
c) $\pi i+2 \pi i k$ is a simple pole for every integer k, ∞ not isolated.
6. a) 3 ; b) $\sqrt{2}$; c) 1 .
7. a)

$$
\frac{1}{z^{2}-1}=z^{-2} \frac{1}{1-z^{-2}}=\sum_{0}^{\infty} z^{-2 n-2}
$$

b)

$$
\begin{gathered}
\frac{1}{z^{2}-2}=\frac{1}{((z+1)-1)^{2}-1}=\frac{1}{(z+1)^{2}-2(z+1)} \\
\quad=-\frac{1}{2(z+1)} \frac{1}{1-(z+1)}=-\frac{1}{2} \sum_{0}^{\infty}(z+1)^{n-1} .
\end{gathered}
$$

c)

$$
\sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{-2 n+1}
$$

8. $e^{x}(x \sin y+y \cos y)$.
9. a) yes; b) no; c) yes; d) no; e) no; f) yes.
