Fourier transform in R"

A. Eremenko

April 27, 2021

1. Definitions and simple properties.

We use boldface letters to denote vectors x = (x1,...,2,) in R", and
X Yy=11+...+ZTpYy

is the usual dot product, and |x| = y/x - x is the norm of the vector.

/f(x)dx means /_Z.../_Zf(xl,...,xn)dxl...dxn.

In polar coordinates, (n = 2)

/f(x)dx = /7; /Ooo f(rcos@,rsinf)rdrdd.

In spherical coordinates (n = 3)

/f(x)dx:/:r /Oﬂ/OOOf(rsin¢cos€,rsin¢sin9,rcos¢)r2sin(bdrdqbdQ.

The integrals over the whole space should be convergent. For example,

/ |x|"“dx < o0
x|>1

when a > n and divergent when o < n. And

/ |x|"dx < oo
Ix|<1
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when o < n and divergent when a > n.
We will use multi-indices o« = (o, a9, ..., ®,), where a; are positive
integers, and
la] = a1 +as+ ... + ay.

For example,

x =t
and
olel f olel f
ox*  Qxft... dxon

Spaces L*(R™), L'(R") and the Schwartz space . are defined as usual,
for example, f € . means

lal

sup | 5—(x) | (1 + [x|™) < oo,

R”

(6%

for all & and m.
Fourier transform is defined for f € . by the formula

PR = F5) = [ 1x)eax

Here s = (s1,...,5,) is a vector, and it is the dot product that stands in the
exponential).

Its properties are almost completely analogous to the properties we es-
tablished earlier for n = 1:

1. Fourier transform is a linear operation.
2. Flf(x—a)] = e @5 f(s), Flevf(x)] = f(s— a).
3. F[f(6x)] =6 "f(07's), F[6"f(0'%x)] = f(ds), &>0.

4. Differentiation and multiplication rules
FI(L) 1] =91 7s)
ox n ’

P o) =i (1) 10



5. Convolution rules

F(fxg)=fg, Flfgl=2m)"f*g.

6. Inversion formula

7. Plancherel’s formula

(f,9) = @0)"(f9), 1P = )" I /1>

To state an additional rule, I recall that an n X n matrix represents a
rotation of the space if it is orthogonal and has determinant 1, that is

ATA=1, and det(A) =1,
and rotations preserve the dot product

(Ax, Ay) = (2,y).

Then we easily obtain:

8. Fourier transform commutes with rotations: F[f(Ax)] = f(As).

Using these rules, one easily generalizes solutions of the heat equation in
the whole space, and Laplace equation in the half-space. The heat kernel is

_ —n/2 . |X‘2
K,(x,t) = (47kt) exp | —— |,

and Poisson’s kernel for the upper half-space
{(x,):xeR"y >0} c R"™
is

I'((n+1)/2)) y
D2 (|x[2 + y2) D2

which is the inverse transform of exp(—|s|y).
However there are interesting differences when we consider the wave equa-
tion in R": the behavior of solution is very different in different dimensions.
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For the Fourier transform of the solution we obtain the formula which looks
almost exactly the same as in dimension 1:

(s, t) = f(s) cos(ct|s|) + Q(S)M

(1)

cfs]

but there are difficulties with finding the inverse transform.
Before we address this question, let us consider another one:

Radial functions. These are functions with the property f(Rx) = f(x) for
all x and all rotations R. It is easy to understand that such functions depend
only on r = |x], so we will write f(x) = fo(|x|). It follows from property 8 of
Fourier transform that Fourier transform of a radial function is also radial.
Sos is f(x) = fo(|x|) we have f(s) = go(|s|), and we want to obtain a formula
for gg. The formula will depend on the dimension n.

n = 2. We have in polar coordinates x = (r cos @, rsinf), s = (pcos ¢, psin ¢),
fo) = [ fe i
2m 00 )
= / / fo(r)e™"? c0s(6=0)y. dr dp.
o Jo

Let us change the variable 6 to ¢, where § = ¢ +t — 7/2. Then the integral
with respect to ¢ will be

2m
/ e"PEtdt = 21 Jo(rp),
0

where Jy is the Bessel function, see “Bessel functions”, section 3, formula
(24). Thus

£(5) = go(p) = 2m / " fo)o(r)rdr, p=1s|.

This is called the Hankel transform of order 0.

Exercise. Prove the inversion formula for the Hankel transform

1

)= 5 [ (o) rolpdp



n = 3. It turns out that this case is simpler. In spherical coordinates, we
write
x = (rsin ¢ cosf, rsin ¢sin b, r cos ¢)

and |s| = p. Since we already know that f depends only on p, it is sufficient
to compute it at points s = (0,0, p), so s - x = rpcos ¢ and

27 fe'e) ™
golp) = £(0,0,p) = /0 /0 /Ofo<r>e—”“°5¢r2sin¢d¢drde. )

Unlike in dimension 2, we have an elementary integral with respect to ¢:

LA 1 1 . i
/ e—zrpcos¢ sin ¢ d¢ _ Py — ._ezrpu|1_1 _ 281n(7”P) ‘ (3)
0 —1 irp rp
Thus
4 [ .
go(p) = ?/ fo(r) sin(rp)r dr. (4)
0

Exercise. Prove the inversion formula

B 1
- on2p

Jo(r)

/0 N 9o(p) sin(rp) pdp.

These calculations can be generalized to arbitrary dimension, and the
general rule is that in odd dimensions radial Fourier transform is simpler
than in even dimensions. This is related to the fact that Bessel functions of
half-integer order are elementary. Radial Fourier transform in dimension n
is expressed in terms of Bessel functions of order n/2 — 1.

Now we return to the wave equation, and to inversion of the Fourier
transform (1).

Case n = 3. First we notice that

d sin(ct|s|)

COS(Ct|S|) = EW’

()
so it is enough to invert the second summand in the formula (1). Here,

unlike in dimension 1, we are confronted with the difficulty that the function
(sins|)/|s| is not integrable.



Let us consider the average of the function e~*7 on the unit sphere. We
denote the area element on the unit sphere by do(v). Here

v = (sin ¢ cos #, sin ¢ sin 6, cos ¢)

is a point on the unit sphere, and do(y) = sin¢ dpdf, the area element.

Then we have |

4 g
Here S? = {x : |x| = 1} is the unit sphere. The meaning of the LHS is
the average over the unit sphere. This formula was actually just proved by

computation (3) where r = 1.
Now we introduce the averaging operator f — M[f],

M) = = [ fx—t7)do(y).

47 52

is. sin |s
o) = %)

In words: the value of the function M,[f] at the point x is the average of the
values of f on the sphere of radius ¢ centered at x. (The area element on
this sphere is t>do while the area of the whole sphere is 47t2.)

Let us express the Fourier transform of M;[f] in terms of f . We have

= % /R ) ( g fx— tv)da(v)) ™ dx.

We change the variable to y = x — 7t, and use the integral (6) and obtain

FIM[f]](s)

FIMLA(s) = fe)2lslt)

This is the second term in (1) with ¢ = 1, divided by ¢. Taking into account
(5), we obtain the solution of the wave equation u; = Aw in the form

(1) = S(EM{F)()) + M) ). @

It remains to notice that if u satisfies uy; = Aw, then v(x,t) = u(x, ct) satisfies
vy = 2 Av, with v(z,0) = u(x,0), v¢(z,0) = cu(z,0), so the formula for the
general case is obtained from (7) by changing t to ct, and dividing g on c.
So the final answer is

(. 1) = S (EMG[1]60) + Mol )
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Case n = 2. This can be reduced to the previous case n = 3 by the simple
argument of “descent”. Indeed, suppose that u solves uy = Au in R? with
initial conditions

u(x,0) = f(x), w(x,0)=g(x), xR~

Then we can extend u, f, g to functions in R? simply by defining @(xy, 7o, 23) =
u(xy, z2) and similarly for f, g. Then @ will solve 3-dimensional wave equation
of the same form and satisfy the initial conditions @(z,0) = f(x), (x,0) =
g(x). Thus we only need to see what happens to the averages M, in formula
(7) when it is applied to such extensions.

It turns out that

Mt[f](xlﬁx%()) :]\Z[f](wl’xQ)u (9>

where

1

=— fx+ty)(1—|y[)2dy, x=(1,2,0) € R® (10)
21 Jiyi<1

M[f](x)

Or, in polar coordinates y = (pcos 8, psin ),

]\Z[f](x) = %/0 /0 f(x+(tpcosh, tpsin®)) (1—p*)V2pdpdd, x e R
(11)

To obtain this result, we compute: p = |y| = sin ¢, where y is the projection
of the point v on the unit sphere onto the unit disk in the plane. Then

dp = cos ¢ d¢, and

db = dp  dp
Ccosd /1 p2
SO
pdpdf dy

do =sinopdpdf = = 7
oo V1=p? 1=yl
and we obtain the result (10), (11). The factor 1/(4m) changes to 1/(27)
because the projection of the sphere on the disk is 2-to-1. So the final formula
for solution of uy = c*u,, in R? is

u(x,1) = 2 (18l + 3Tl ). (12)
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Discussion. Let us compare the d’Alembert formula

x+ct

W) = (F(z — o) + flz+ct))/2 + 236/ o(u)du

r—ct

with formulas (8) and (12). Suppose that something happens (a flash) near
(x,t) = (0,0). This means that the initial conditions f, g are supported by a
small neighborhood of 0. If the observer is placed at a point x, she will see
nothing until the time ¢ = |x|/¢, that is u(x,t) = 0 for ¢t < |x|/c. This means
that the wave has a finite speed of propagation ¢, and this is a property of
the wave equation in all dimensions. Notice that heat equation does not have
this property: with any positive initial condition solution will be positive in
the whole space at all times.

Now, formula (8) involves only averages over the sphere of radius ct about
x. This means that when ¢ > |x|/c the observer also sees nothing. So a short
flash arrives to the observer at time |x|/c as a short flash. Solution (12)
in dimension 2 is quite different: it involves integrals over the whole ball
centered at x of radius ct. This means that for all times ¢t > |x|/c the
observer still sees something. If the equation described sound waves, this
can be interpreted as a long echo.

So if the dimension of our space were even, we would be unable to com-
municate using light or sound: the whole space would be filled by continuous
echo from all sources.



