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1. We consider differential operators

L : y 7→ −y′′ + Py,

where the potential P is a polynomial of de-

gree d. When d ∈ {0,1,2}, the general solu-

tion of Ly = 0 can be expressed in terms of

special functions (elementary, Airy or Weber

functions, respectively). The eigenvalue prob-

lem for d = 2 (harmonic oscillator) plays an

important role in quantum mechanics.

We mostly consider the cases d = 3 and d = 4.

Cubic and quartic oscillators were studied a lot

from the very beginning of quantum mechan-

ics, mostly by perturbative methods. Cubic

oscillator arises in quantum field theory (Zinn-

Justin) and in the theory of Painleve equations

(Masoero).
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2. Boundary conditions. By an affine transfor-

mations of the independent variable we nor-

malize: P (z) = zd + O(zd−2).

Consider the sectors

Sj =

{

z :

∣

∣

∣

∣

arg z −
2πj

d + 2

∣

∣

∣

∣

<
π

d + 2

}

, 0 ≤ j ≤ d+1.

Every solution y of Ly = 0 is an entire function.

For each j ∈ {0, . . . , d + 1} it either grows ex-

ponentially along all rays from the origin in Sj

or tends to zero exponentially along every such

ray in Sj. We choose two non-adjacent sectors,

and impose the condition that the eigenfunc-

tion tends to 0 in these sectors.

With such boundary conditions, the problem

has infinite discrete spectrum and eigenvalues

tend to infinity. To each eigenvalue corre-

sponds one-dimensional eigenspace.
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3. Suppose that the polynomial potential de-

pends analytically on a parameter a ∈ Cn. Then

the spectral locus Z is defined as the set of all

pairs (a, λ) ∈ Cn+1 such that the differential

equation

−y′′ + P (z, a)y = λy

has a solution y satisfying the boundary con-

ditions. Spectral locus is an analytic hyper-

surface in Cn+1; it is the zero-set of an entire

function F (a, λ) which is called the spectral de-

terminant.

The multi-valued function λ(a) defined by

F (a, λ) = 0 has the following property: its only

singularities are algebraic ramification points,

and there are finitely many of them over every

compact set in the a-space (EG1).

Next we discuss connectedness of the spectral

locus.

3



Theorem 1 For the cubic oscillator

−y′′ + (z3 − az + λ)y = 0, y(±i∞) = 0,

the spectral locus is a smooth irreducible curve

in C2.

Theorem 2 (EG1) For the even quartic os-

cillator

−y′′ + (z4 + az2)y = λy, y(±∞) = 0,

the spectral locus consists of two disjoint smooth

irreducible curves in C2, one corresponding to

even eigenfunctions, another to odd ones.

These theorems can be generalized to poly-

nomials of arbitrary degree if we use all coeffi-

cients as parameters (Habsch, Alexandersson).

However if we consider a subfamily of the fam-

ily of all polynomials of given degree, then the

spectral locus can be reducible in an interest-

ing way.
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4. Quasi-exactly solvable quartic LJ

−y′′ +(z4 − 2bz2 +2Jz)y = λy, y(re±πi/3) → 0.

When J is a positive integer, this problem has

J elementary eigenfunctions of the form

p(z) exp(z3/3 − bz), with a polynomial p. The

(b, λ) corresponding to these eigenfunctions form

the quasi-exactly solvable part Z
QES
J of the

spectral locus ZJ, which is an algebraic curve.

Theorem 3 Z
QES
J is a smooth irreducible curve

in C2.

Similar phenomenon occurs in degree 6: there

are one parametric families of quasi-exactly solv-

able sextics, and for each such family the quasi-

exactly solvable part of the spectral locus is a

smooth irreducible algebraic curve.

When J → ∞, an appropriate rescaling of Z
QES
J

tends to the spectral locus of one-parametric

cubic family, and a rescaling of the sextic QES

spectral locus tends to the spectral locus of

the even quartic family.
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5. Hermitian and PT-symmetric operators. An

eigenvalue problem can be preserved by a sym-

metry with respect to a line in the complex z-

plane. Without loss of generality, we can take

this line to be real line, and the symmetry to

be the complex conjugation. Two cases are

possible:

a) Each of the two boundary conditions is pre-

served by the symmetry. In this case the prob-

lem is Hermitian.

b) The two boundary conditions are interchanged

by the symmetry. Such problems are called

PT-symmetric. (Physicists prefer to choose

the symmetry with respect to the imaginary

line in this case. PT stands for “parity and

time”.)
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Thus we consider a real potential P , and the

boundary conditions are imposed on the real

line in the Hermitian case, or are interchanged

by the complex conjugation in the PT-symmetric

case. For example, there is a real-one-parametric

family of PT-symmetric cubics, when parame-

ter a is real and normalization is on the imag-

inary line as above. There are two different

real-two-parametric families of PT-symmetric

quartics which we call I and II:

−y′′ + (−z4 + az2 + cz + λ)y = 0, y(±i∞) = 0,

(1)

and

−y′′ + (z4 − 2bz2 + 2Jz)y = λy, y(re±πi/3) → 0.

(2)
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We begin with the cubic PT-symmetric spec-

tral locus

−w′′ + (z3 − az + λ) = 0, w(±i∞) = 0. (3)

Theorem 4 For every integer n ≥ 0, there ex-

ists a simple curve Γn ⊂ R2, which is the image

of a proper analytic embedding of a line, and

which has these properties:

(i) For every (a, λ) ∈ Γn problem (3) has an

eigenfunction with 2n non-real zeros.

(ii) The curves Γn are disjoint and the real

spectral locus of (3) is
⋃

n≥0 Γn

(iii) The map

Γn ∩ {(a, λ) : a ≥ 0} → R≥0,

(a, λ) 7→ a is a 2-to-1 covering.

(iv) For a ≥ 0, (a, λ) ∈ Γn and (a, λ′) ∈ Γn+1

imply λ′ > λ.
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The following computer-generated plot of the

real spectral locus of (3) is taken from Trinh’s

thesis (2002). Theorem 4 rigorously estab-

lishes some features of this picture.

Fig 1. Real spectral locus for PT -symmetric

cubic.
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Consider the PT-symmetric quartic family of

type I:

−w′′ +(−z4 + az2 + cz)w = −λw, w(±i∞) = 0.

(4)

It is equivalent to the PT -symmetric family

−w′′ + (z4 + az2 + icz)w = λw, w(±∞) = 0,

studied by Bender, et al (2001) and Delabaere

and Pham (1998).

Theorem 5 The real spectral locus of (4) con-

sists of disjoint smooth analytic properly em-

bedded surfaces Sn ⊂ R3, n ≥ 0, homeomor-

phic to a punctured disk. For (a, c, λ) ∈ Sn,

the eigenfunction has exactly 2n non-real ze-

ros. For large a, projection of Sn on the (a, c)

plane approximates the region 9c2 − 4a3 ≤ 0.
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Numerical computation suggests that the sur-

faces have the shape of infinite funnels with

the sharp end stretching towards a = −∞, c =

0, and that the section of Sn by every plane

a = a0 is a closed curve.

Theorem 5 implies that this section is compact

for large a0.

The following computer-generated plot is taken

from Trinh’s thesis:

Fig 2. Section of the surfaces S0, . . . , S3 by

the plane a = −9.
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The PT-symmetric quartic family of the sec-

ond type is more complicated, due to the pres-

ence of the QES spectrum. Let Z
QES
J (R) be

the real QES spectral locus of the operator LJ,

−y′′ +(z4−2by2 +2Jz)y = λy, y(re±πi/3) → 0.

Theorem 6 For J = n + 1 > 0, Z
QES
n+1 (R)

consists of [n/2] + 1 disjoint analytic curves

Γn,m, 0 ≤ m ≤ [n/2].

For (b, λ) ∈ Γn,m, the eigenfunction has n ze-

ros, n − 2m of them real.

If n is odd, then b → +∞ on both ends of Γm,n.

If n is even, the same holds for m < n/2, but

on the ends of Γn,n/2 we have b → ±∞.

If (b, λ) ∈ Γn,m and (b, µ) ∈ Γn,m+1 and b is

sufficiently large, then µ > ν.
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It follows from these theorems that in each

family, there are infinitely many parameter val-

ues where pairs of real eigenvalues collide and

escape from the real line to the complex plane.

In the quartic family of the second type, an-

other interesting feature of the real spectral

locus is present: for some parameter values

the QES spectral locus crosses the rest of the

spectral locus. This is called “level crossing”.

Theorem 7 The points (b, λ) ∈ Z
QES
J where

the level crossing occurs are the intersection

points of Z
QES
J with Z−J. For each J ≥ 1

there are infinitely many such points, in gen-

eral, complex. When J is odd, there are in-

finitely many level crossing points with bk < 0

and real λk. We have

bk ∼ −((3/4)πk)2/3, k → ∞.
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The only known general result of reality of

eigenvalues of PT -symmetric operators is a the-

orem of K. Shin, which for our quartic of sec-

ond type implies that all eigenvalues are real if

J ≤ 0.

We have the following extensions of this result.

Theorem 8 For every positive integer J, all

non-QES eigenvalues of LJ are real.

and

Theorem 9 All eigenvalues of LJ are real for

every real J ≤ 1 (not necessarily integer).
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Methods of proofs.

a) Nevanlinna parametrization of the spectral

locus.

b) Asymptotics at infinity (singular perturba-

tion theory).

c) Darboux transform of QES quartic.
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Nevanlinna parametrization. Let Z be the spec-

tral locus of the problem

−y′′ + P (z, a)y = λy, y(z) → 0, z ∈ Sj ∪ Sk.

Let (a, λ) ∈ Z, and y0 an eigenfunction. Let

y1 be a second linearly independent solution.

Then f = y0/y1 satisfies the Schwarz differen-

tial equation

f ′′′

f ′
−

3

2

(

f ′′

f ′

)2

= −2(P − λ).

This function f is meromorphic in C, has no

critical points and has d + 2 asymptotic val-

ues, one in each Stokes sector. Asymptotic

values in Sj and Sk are 0. Asymptotic values

in adjacent sectors are distinct.

In the opposite direction: if we have a mero-

morphic function in C without critical points

and with finitely many asymptotic values, then

it satisfies a Schwarz equation whose RHS is a

polynomial. The degree of this polynomial is

the number of asymptotic tracts minus 2.
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Asymptotic values are meromorphic functions

on Z which serve as local parameters. These

are Nevanlinna parameters. They are simply

related to the Stokes multipliers of the linear

ODE.

Functions f of the above type with given set

of asymptotic values A = {a0, . . . , ad+1} have

the property that

f : C\f−1(A) → C\A

is a covering map. For a fixed A such covering

map can be completely described by certain

combinatorial information, a cell decomposi-

tion of the plane. These cell decompositions

label the charts of our description of the spec-

tral locus.

It is important that we know exactly which cell

decompositions can occur and how the cell de-

composition changes when the point (a0 . . . , ad+1)

goes over a closed loop in Cd+2.
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This gives an action of the braid group on the

set of special cell decompositions of the plane

which can be explicitly computed.

This reduces the problem of parametrization

of a spectral locus to combinatorial topology.



For QES operators we use the Darboux trans-

form. Let −D2 + V be a second order lin-

ear differential operator with potential V . Let

φ0, . . . φn be some eigenfunctions with eigen-

values λ0, . . . , λn. The transformed operator is

−D2 + V − 2
d2

dz2
logW (φ0, . . . , φn),

where W is the Wronski determinant. The

eigenvalues of the transformed operator are ex-

actly those eigenvalues of −D2 + V which are

distinct from λ0, . . . , λn.

We use the Darboux transform to kill the QES

part of the spectrum of LJ and it turns out that

the transformed operator is L−J!
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Our study of the QES locus of the quartic

family gives the following interesting identities.

Let h and p be polynomials. When does y =

peh satisfy a linear differential equation y′′ +

Py = 0 with a polynomial P?

Theorem 10 TFAE:

a) p′′ + 2p′h′ is divisible by p,

b) p−2eh has no residues,

c) zeros of p satisfy the system of equations

∑

j:j 6=k

1

zk − zj
= −h′(zk), 1 ≤ k ≤ deg p.
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Now take h(z) = z3/3 − bz.

Theorem 11 Let p be a polynomial. All residues

of y = p−2e−2h vanish if and only if there exists

a constant C and a polynomial q such that
(

p2(−z) −
C

p2(z)

)

e−2h(z) =
d

dz

(

q(z)

p(z)
e−2h(z)

)

.

Moreover, if this happens then

C = (−1)n2−2n ∂

∂λ
Qn+1,

where λ = y′′/y − z4 + 2bz2 − 2(n + 1)z, and

Qn+1(b, λ) = 0 is the equation of the QES

spectral locus of Ln+1.

This was conjectured in [EG] on the basis of

calculations with Darboux transform of Ln+1

and proved by E. Mukhin and V. Tarasov.
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