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1. An Hermitian product on a complex vector space V is an assignment of
a complex number (x, y) to each pair of vectors x, y, which has the following
properties for all vectors x, y, z and for all numbers α, β:

(x, y) = (y, x),

(x, αy + βz) = α(x, y) + β(x, z),

(x, x) ≥ 0,

with equality only for x = 0.
Example. (x, y) = x1y1 + . . .+ xnyn. This example is called the standard

Hermitian product on Cn.
It follows from the first two properties that (αx, y) = α(x, y). They say

that (x, y) is linear with respect to the second argument and anti-linear with
respect to the first one.

An Hermitian transposition is the combination of two operations: ordi-

nary transposition and complex conjugation. It is denoted by star, A∗ = A
T
,

where the bar is the complex conjugation. So the standard Hermitian prod-
uct can we written as (x, y) = x∗y.

Two vectors are called orthogonal if (x, y) = 0. Vectors orthogonal to
some given set of vectors form a subspace. If V ′ is a subspace of V then
its orthogonal complement consists of all vectors orthogonal to each vector
of V . Two subspaces are called orthogonal if each vector of one of them is
orthogonal to each vector of another one.

A square matrix A is called Hermitian if

A∗ = A.
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A real matrix is Hermitian if and only if it is symmetric. Hermitian matrices
are characterized by the property

(Ax, y) = (x,Ay), for all x, y in V, (1)

where (., .) is the standard Hermitian product. Indeed, A∗ = A is equivalent
to

(Ax, y) = (Ax)∗y = x∗Ay = (x,Ay), for all x, y in V.

A square matrix U is called unitary if

U∗U = I,

which is the same as U∗ = U−1. In other words, a unitary matrix is such
that its columns are orthonormal. Unitary matrices are characterized by the
property

(Ux, Uy) = (x, y) for all x, y in V. (2)

Indeed,
(Ux, Uy) = (Ux)∗Uy = x∗U∗Uy = x∗y = (x, y).

A real matrix is unitary if and only if it is orthogonal.

We recall that each n × n matrix defines a linear operator on Cn acting
by the rule L(x) = Ax. And conversely, each linear operator in a finite-
dimensional vector space is described by a matrix. This correspodence be-
tween matrices and linear operators depends on the choice of a basis.
2. Spectral theorem for Hermitian matrices. For an Hermitian matrix:

a) all eigenvalues are real,
b) eigenvectors corresponding to distinct eigenvalues are orthogonal,
c) there exists an orthogonal basis of the whole space, consisting of eigen-

vectors.

Thus all Hermitian matrices are diagonalizable. Moreover, for every Her-
mitian matrix A, there exists a unitary matrix U such that

AU = UΛ,

where Λ is a real diagonal matrix. The diagonal entries of Λ are the eigen-
values of A, and columns of U are eigenvectors of A.

Proof of Theorem 2. a). Let λ be an eigenvalue, then

Ax = λx, x ̸= 0
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for some vector x. Multiply both sides on x:

(Ax, x) = (λx, x) = λ(x, x).

Property (1) shows that (Ax, x) equals

(x,Ax) = (x, λx) = λ(x, x).

As (x, x) ̸= 0, we conclude that λ = λ, that is λ is real. This proves a).
Proof of b). Suppose we have two distinct eigenvalues λ ̸= µ. Then

Ax = λx, Ay = µy, (3)

where x, y are eigenvectors. Multiply the first equation on y, use (1) and the
fact that λ is real which was just established.

λ(x, y) = (λx, y) = (Ax, y) = (x,Ay) = (x, µy) = µ(x, y).

As λ ̸= µ, we conclude that (x, y) = 0, which proves b).
Proof of c). Let λ1 be an eigenvalue, and x1 an eigenvector corresponding

to λ1 (every square matrix has an eigenvalue and an eigenvector). Let V1 be
the set of all vectors orthogonal to x1. Then A maps V1 into itself: for every
x ∈ V1 we also have Ax ∈ V1. Indeed, x ∈ V1 means that (x1, x) = 0, then
we have using (1):

(x1, Ax) = (Ax1, x) = λ1(x1, x) = 0,

so x ∈ V1. Now the linear operator L(x) = Ax when restricted to V1 is also
Hermitian, and it has an eigenvalue λ2 and an eigenvector x2 ∈ V1. By
definition of V1, x2 is orthogonal to x1. Let V2 be the orthogonal complement
of the span of x1, x2. Then A also maps V2 into itself, as before. Continuing
this way, we find a sequence λk, xk and subspaces Vk containing xk such that
Vk is orthogonal to x1, . . . , xk−1. The sequence must terminate on the n-th
step because dimVk = n− k: on every step dimension decreases by 1. This
completes the proof.

3. Spectral theorem for unitary matrices. For a unitary matrix:
a) all eigenvalues have absolute value 1.
b) eigenvectors corresponding to distinct eigenvalues are orthogonal,
c) there is an orthogonal basis of the whole space, consisting of eigenvec-

tors.
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Thus unitary matrices are diagonalizable. Moreover, for each unitary
matrix A there exists a unitary matrix U such that

AU = UΛ

where U is a diagonal matrix whose diagonal entries have absolute value 1.
The columns of U are eigenvectors of A.

Proof of Theorem 2. a) Let λ be an eigenvalue. Then

Ax = λx, x ̸= 0.

Using (2) we obtain

(x, x) = (Ax,Ax) = λλ(x, x).

As (x, x) ̸= 0, we conclude that λλ = |λ|2 = 1, which proves a).
Proof of b). Begin with (2), (3), and obtain

(x, y) = (Ax,Ay) = λµ(x, x).

As |λ| = 1, we conclude that λ = λ−1, so the multiple in the RHS is µ/λ ̸= 1
by our assumption that µ ̸= λ. So (x, y) = 0, which proves b).

Proof of c). Let λ1 be an eigenvalue, and x1 an eigenvector corresponding
to this eigenvalue, Let V1 be the set of all vectors orthogonal to x1. As in
the proof in section 2, we show that x ∈ V1 implies that Ax ∈ V1. Indeed

(Ax, x1) = (x,A∗x1) = (x,A−1x1) = λ−1(x, x1) = 0,

where we used (2) which is equivalent to A∗ = A−1. The proof is now
completed in exactly the same way as in the previous section.

4. Exponentials of Hermitian matrices. Let A be an Hermitian matrix.
Then eiA is unitary, and conversely, every unitary matrix has the form eiA

for some Hermitian matrix A.

Let B be a real matrix, and A = iB. Then A is Hermitian if and only if
B is skew symmetric (BT = −B):

A∗ = (−i)BT = iB = A.

So we obtain a
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Corollary: For a real matrix B, eB is orthogonal if and only if B is skew-
symmetric.

Proof. Let U = eiA, where A is Hermitian. Then

UU∗ = eiAe−iA∗
= eiAe−iA = I.

Conversely, let U be a unitary matrix. Then, by the Spectral Theorem
for unitary matrices (section 3), there is another unitary matrix B such that
U = BΛB−1, and Λ = diag (λ1, . . . , λn). As all |λk| = 1, we write them as
λk = eiθk , where θk are real numbers. Then set

A = B diag (θ1, . . . , θn)B
−1 = BΛ1B

−1.

Then A is Hermitian:

A∗ = (B−1)∗Λ1B
∗ = BΛ1B

−1 = A,

and evidently exp(iA) = U .

5. These three theorems can be generalized to infinite-dimensional spaces.
Unlike the Jordan form theorem. One can say that we understand well
Hermitian and unitary operators, but not arbitrary linear operators.

These three theorems and their infinite-dimensional generalizations make
the mathematical basis of the most fundamental theory about the real world
that we possess, namely quantum mechanics.

6. Normal operators. According to part c) of our spectral theorems, if A
is either Hermitian or unitary then there is an orthonormal basis consisting
of eigenvectors. Let us describe all operators with this property. If there is
an orthonormal basis of eigenvectors of A then

A = UΛU−1 = UΛU∗, (4)

where columns of U are eigenvectors of our basis, and the second equation
holds because U is unitary, U−1 = U∗. From (4) we conclude that

A∗ = UΛ∗U∗ = UΛ∗U−1. (5)

Notice that all pairs of diagonal matrices commute Λ1Λ2 = Λ2Λ1, and we
conclude from (4) and (5) that

AA∗ = A∗A.
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Operators and matrices with this property are called normal. We just proved
that existence of a basis of eigenvectors implies normality. Now we prove the
converse.

For each normal operator A, there exists an orthonormal basis of the space
consisting of eigenvectors.

The proof is similar to the proof of c) for Hermitian and unitary operators.
Let λ1 be some eigenvalue, and V1 the corresponding eigenspace. By

definition, V1 consists of all vectors x such that Ax = λ1x. Let U1 be the
orthogonal complement of V1. By definition, U1 consists of all vectors y such
that

(x, y) = 0 for all x ∈ V1. (6)

Let us prove that A∗ maps V1 into itself. Suppose y ∈ V1 we want to prove
that A∗y ∈ V1. We have

A(A∗y) = A∗Ay = A∗(λy) = λ(A∗y),

thus Ay ∈ V1 as advertised.
Now we prove that A maps U1 to itself. That is that (6) implies

(x,Ay) = 0 for all x ∈ V1.

We have
(x,Ay) = (A∗x, y) = 0,

because x ∈ V1 implies A∗x ∈ V1 as we have seen before.
Now we show that A∗ also maps U1 into itself. Indeed, if (y, x) = 0 for

all x ∈ V1, then for all x ∈ V1 we have‘

(A∗y, x) = (y, Ax) = λ1(y, x) = 0,

So A∗y ∈ U1.
So the restriction of A on U1 is also normal, and the proof ends with an

induction as in the proof of c) in previous theorems.

7. Orthogonal projections In general, a projector is an operator P with
the property

P 2 = P. (7)

Let V be the column space and U be the null-space. Equation (7) means
that P acts as the identity on V . Now (7) also implies that U ∩ V = {0}.
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Indeed, if x ∈ U ∩ V then we have Px = 0 and x = Py for some y. Then
0 = Px = P 2y = Py = x by (7), so x = 0.

So the whole space is the direct sum of U and V , which means that every
vector x has a unique representation

x = u+ v, where u ∈ U and v ∈ V. (8)

Operator P collapses U to {0} and acts as the identity on V . In other words,
for an x as in (8), Px = v.

A projector is called an orthoprojector (“orthogonal projector”) if in ad-
dition to (7) it is Hermitian,

P ∗ = P. (9)

A projector is Hermitian if and only if U is orthogonal to V , which together
with (8) implies that U and V are orthogonal complements of each other.
Indeed, let x ∈ U and y ∈ V . Then y = Pz for some z and Px = 0 by
definition of U and V . So

(x, y) = (x, Pz) = (Px, y) = 0.

Exercise. Previously we derived a formula for the orthoprojector onto the
column space of a (rectangular) matrix A with linearly independent columns:

P = A(A∗A)−1A∗.

Show that this P has properties (1) and (9).

Exercise. Let P1 and P2 be two orthoprojectors. Show that P1P2 =
P2P1 = 0 if and only if the subspaces V1, V2 on which they project are or-
thogonal.

Exercise. Show that every normal operator A can be written in the form

A = λ1P1 + . . .+ λkPk,

where λ1, λk are all eigenvalues, and Pj is the orthoprojector onto the eigenspace
corresponding to λj. Moreover, these orthoprojectors Pj satisfy

k∑
j=1

Pj = I, and PiPj = 0 for all i, j.

This representation of a normal operator A is called the spectral decomposi-
tion. The operator A is Hermitian when all λj are real, and unitary when all
λj have absolute value 1.
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