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The spherical coordinates are (r, φ, θ), where

r ≥ 0, 0 ≤ φ ≤ π, −π < θ ≤ π,

here r is the distance from the origin, and (φ, θ) are coordinates on the sphere:
φ is called co-latitude, (the ordinary geographical latitude is π/2−φ), and θ
is the longitude (same as in geography).

The correspondence between spherical and rectangular coordinates is as
follows:

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

Draw a picture to visualize this.
The volume element

dx dy dz = r2 sinφ dr dφ dθ,

and the area element on the sphere of radius r centered at the origin is

r2 sinφ dφ dθ.

Laplace operator has this form:

∆u = urr +
2

r
ur +

1

r2 sinφ
(uφ sinφ)φ +

1

r2 sin2 φ
uθθ.

It is convenient to write it as a sum

∆u = ∆ru+
1

r2
∆su,
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where ∆r is the radial part containing derivatives with respect to r only, and
∆s is the spherical part containing derivatives with respect to the angular
coordinates.

For future use, it is convenient to consider a more general equation of the
form

Lru+
1

r2
∆su = 0, (1)

where Lr is any operator involving only derivatives with respect to r.
Our first task is to separate the variables, and deal with the spherical

part.
Looking for solutions of (1) of the form

u(r, φ, θ) = R(r)S(φ, θ),

we obtain

r2
LrR

R
= −∆sS

S
.

Since the LHS depends only on r and the RHS only on φ, θ, their common
value must be a constant λ. Then the radial part becomes

r2LrR = λR, (2)

and the spherical part becomes

∆sS + λS =
1

sinφ
(Sφ sinφ)φ +

1

sin2 φ
Sθθ + λS = 0. (3)

Our first main concern will be the spherical part. Notice that in (3) there are
no explicitly stated boundary conditions, since the sphere has no boundary.
However the very nature of the spherical coordinates imposes some conditions
since we are looking for smooth, continuous functions on the sphere. First
of them is that θ 7→ S(φ, θ) must be periodic, with period 2π. And there
is one more, related to the North and South poles φ ∈ {0, π} which will be
discussed below.

1. Spherical part of the Laplace operator.

We perform the second separation of variables by setting S(φ, θ) = Φ(φ)Θ(θ)
in (3), multiplying on sin2 φ and shifting the θ part to the RHS: and obtain

sinφ (Φ′ sinφ)′

Φ
+ λ sin2 φ = −Θ′′

Θ
.
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since the LHS depends only on φ and the RHS depends only on θ, we conclude
that they are both equal to the same constant which we denote by m2, so
the problem for Θ is of familiar type:

Θ′′ +m2Θ = 0,

with periodic boundary conditions (recall that θ is the longitude!). We con-
clude that m is a non-negative integer, and eigenfunctions are

Θm(θ) = am cos(mθ) + bm sin(mθ), m = 0, 1, 2, . . . ,

or in complex form

Θm(θ) = cme
imθ, m = 0,±1,±2, . . . . (4)

Now the φ part becomes, after division on sin2 φ:

(Φ′ sinφ)′

sinφ
+

(
λ− m2

sin2 φ

)
Φ = 0. (5)

This can be simplified by the change of the independent variable x = cosφ.
As φ changes between 0 and π, x describes the interval [−1, 1], and this
correspondence is one-to-one. Concerning derivatives, we have

d

dφ
=

d

dx

dx

dφ
= − sinφ

d

dx
, or

1

sinφ

d

dφ
= − d

dx
,

so if we set S(x) = S(cosφ) =: Φ(φ), and notice that 1 − x2 = sin2 φ, we
obtain

(Φ′ sinφ)′

sinφ
=

d

dx

(
(1− x2)S ′

)
,

and our equation (5) becomes

(
(1− x2)S ′

)′
− m2S

1− x2
+ λS = 0, (6)

which is the associated Legendre equation (see the handout “Orthogonal poly-
nomials”).

Let us discuss the boundary conditions for (6).
When m = 0, the theta part Θ(θ) is constant (see (4), so the requirement

for Φ is that it has finite limits for φ → 0, π, which means that S has finite
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limits as x = cosφ→ ±1. Thus in this case the condition is that S(x) tends
to finite limits as x→ ±1, and under this condition, we obtain eigenvalues

λn = n(n+ 1), n = 0, 1, 2 . . . (7)

and eigenfunctions are Sn = Pn, the Legendre polynomials (see “Orthogonal
polynomials”).

When m ≥ 1 we have that Θm(θ) non-constant, so for existence of the
limits of Θ(θ)Φ(φ) as φ → 0 or φ → π, it is necessary that Φ(0) = 0 and
Φ(π) = 0. The reason is that φ = 0 and φ = π correspond each to one
point on the sphere (North and South pole, respectively). So we obtain
the boundary conditions Φ(0) = Φ(π) = 0 which translates to S(±1) = 0,
exactly as required for the associated Legendre equation to have eigenvalues
n(n+ 1) and associated Legendre functions Pm

n as eigenfunctions!
If we use complex form of Θm as in (4), we allow m to be any integer,

positive or negative, but since equation (6) contains only m2 we write its
eigenfunctions as P |m|n .

The conclusion is that the φ-part always has eigenvalues λn as in (7), and
eigenfunctions P |m|n (cosφ), where n ≥ m.

Combining the results for θ and φ parts, we make the following funda-
mental conclusion:

Theorem. Eigenvalues for the spherical part of the Laplace operator (3) are
λn = n(n + 1), n = 0, 1, 2, . . . . To each eigenvalue λn correspond 2n + 1
linearly independent eigenfunctions, namely

P |m|n (cosφ)eimθ, −n ≤ m ≤ n, (8)

where P |m|n are associated Legendre functions.

Another (real) basis of eigenfunctions consists of

Pm
n (cosφ) cos(nθ), 0 ≤ m ≤ n, (9)

and
Pm
n (cos θ) sin(nθ), 1 ≤ m ≤ n, (10)

and of course we again have 2n+ 1 of them.

It follows from the results about associated Legendre functions stated in
“Orthogonal polynomials” that functions (8) form an complete orthogonal
system in L2 on the sphere.
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Another basis consisted of real functions is formed by functions (9) and
(10).

2. Applications.

2.1. Dirichlet problem for a three-dimensional ball.

∆u = 0, u(L, φ, θ) = f(φ, θ), (11)

where f is the boundary condition. We have equation (1) with the radial
part Lru = ∆ru, so (2) becomes

r2urr + 2rur − n(n+ 1)u = 0,

where n(n+1) are eigenvalues of the spherical part which we found in the pre-
vious section, see (7). This is Euler’s equation whose characteristic equation
is

ρ(ρ− 1) + 2ρ− n(n+ 1) = 0,

whose solutions are ρ1 = n, ρ2 = −n − 1. The second solution is rejected
because r−n−1 will blow up as r → 0, since n ≥ 0, so only rn remains, and
we obtain the general solution of (11) in the form

∞∑
n=0

n∑
m=−n

cm,ne
imθrnP |m|n (cosφ).

To satisfy the boundary condition, we plug r = L and obtain

f(φ, θ) =
∞∑
n=0

n∑
m=−n

cm,ne
imθLnP |m|n (cosφ), (12)

which is a generalized Fourier series. Its coefficients are obtained by Fourier
formulas, using the values

‖P |m|n ‖2 =
2

2n+ 1

(n+ |m|)!
(n− |m|)!

,

computed in “Orthogonal polynomials”:

cm,n =
(2n+ 1)(n− |m|)!

4πLn(n+ |m|)!

∫ π

0

∫ π

−π
f(φ, θ)e−imθP |m|n (cosφ) sinφ dφ dθ.
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Exercise. Where did sinφ under the integral come from?

Remarks.
1. In general, an eigenvalue problem in k dimensions will have eigenfunc-

tions labeled by k subscripts.
2. One can proceed as we did for the Dirichlet problem for the disk,

and derive a Poisson formula, which may be more convenient than a series
expansion. (It contains only one integral instead of infinitely many in Fourier
formula!) Instead of summing a geometric series, as in the derivation of
Poisson’s formula in 2 dimensions, one would use the generating function for
Legendre polynomials. The statement is given in Theorem 6.10 in the book.

3. It turns out that each term of the series (12), when expressed in rect-
angular coordinates, becomes a homogeneous polynomial in x, y, z of degree
n and this polynomial satisfies the Laplace equation. These polynomials are
called the spherical harmonics, and the explicit expression is

rnY m
n (φ, θ) := rnP |m|n (cosφ)eimθ.

2.2. Eigenvalue problem for Laplace operator in a ball.

It arises when separating the time variable from the space variables in
the heat or wave equation for a ball ‖x‖ ≤ L.

The space part is
∆u+ E2u = 0, (13)

subject to boundary conditions, for example, the Dirichlet boundary condi-
tion

u(L, φ, θ) = 0, (14)

or the Neumann boundary condition

ur(L, φ, θ) = 0. (15)

I denoted the eigenvalue by E2, since I now it is going to be positive, and
used another later, to avoid confusion with λn = n(n+ 1) is section 1.

Writing ∆ = ∆r + r−2∆s in (13) and separating the variables, we obtain
the eigenvalue problem for ∆s, which we solved in section 1, and the radial
part (2)s with

Lr = ∆r + E2.

6



So we have to solve the radial part

r2Rrr + 2rRr + (E2r2 − n(n+ 1))R = 0,

which is (2) with substituted value λ = n(n + 1) found in the Theorem in
Section 1,

This looks very similar to Bessel equation, and indeed can be transformed
to Bessel equation by the change of the variable R(r) = r−1/2y(Er), which
gives the Bessel equation

r2y′′ + ry′ + (r2 − (n+ 1/2)2)g = 0.

Since we need a solution which is finite at 0, the solution is

Rn(r) = r−1/2Jn+1/2(Er).

Exercise: what is Rn(0), really?
Now the boundary condition (14) gives Jn+1/2(EL) = 0, so

En,k = xn+1/2,k/L,

where xn+1/2,k is the k-th zero of Bessel function Jn+1/2. It is worth recalling
that Jn+1/2 is in fact elementary, so its zeros can be found explicitly, at least
in principle. The eigenfunctions corresponding to these eigenvalues are

um,n,k(r, φ, θ) = r−1/2Jn+1/2(En,kr)P
|m|
n (cosφ)eimθ.

The boundary condition (14) translates into J ′n+1/2(EL) = 0, so this time

En,k = yn+1/2,k/L, (16)

where yn+1/2,k is the k-th zero of derivative of the Bessel function Jn+1/2. The
eigenfunctions are of the same form using these new values (16).

These eigenvalues and eigenfunctions allow us to solve heat and wave
equations for the ball.

2.3. Spectrum of the hydrogen atom and the periodic table

It is the following eigenvalue problem1 in the whole 3-space:

∆u+
2

r
u+ 2Eu = 0,

1For simplicity of formulas, we use the units where Planck’s constant, mass and charge
of the electron are all equal to 1.
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where E < 0 is the eigenvalue2, and the boundary condition is that u ∈
L2(R3) which essentially means that u(x)→ 0 when |x| → ∞. And of course
u is assumed to be finite everywhere. The problem is to find eigenvalues.
Eigenvalues correspond to possible energies of an electron in an atom.

Applying the same approach as in the beginning of this text, we split
∆ into spherical and radial parts (1), and use our solution of the spherical
problem is section 2. Eigenvalues of the spherical part are n(n+1) (Theorem
in Section 1), so the radial part (2) becomes

r2R′′ + 2rR′ +
(
2Er2 + 2r − n(n+ 1)

)
R = 0.

We are looking for negative numbers E for which this equation has a non-
trivial solution which is finite at 0 and tends to 0 at +∞. It turns out that
the differential equation can be transformed to the Laguerre equation by the
following changes of the variables.

First we set

ν = (−2E)−1/2, x = 2r/ν, S(x) = S(2r/ν) = R(r).

which gives

x2S ′′ + 2xS ′ +
(
νx− x2/4− n(n+ 1)

)
S = 0,

and then we put S(x) = xne−x/2y(x), and obtain

xy′′ + (2n+ 2− x)y′ + (ν − n− 1)y = 0,

which is the Laguerre equation with α = 2n+ 1 and n replaced by ν−n− 1.

Exercise. Verify these changes of the variables.

The boundary conditions imply that the solutions must be the Laguerre
polynomials, of degree n− ν − 1, so we conclude that

ν ≥ n+ 1 is an integer, and thus the eigenvalue E is

Eν = − 1

2ν2
, ν = n+ 1, n+ 2, . . . . (17)

2One can show that all eigenvalues are negative, though the set of eigenfunctions is not
complete. Eigenvalues correspond to the stationary states of the hydrogen atom.
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So
Rn,ν(r) = (2r/ν)ne−r/νL2n+1

ν−n−1(2r/ν).

and the eigenfunctions of the original problem are

um,n,ν(r, φ, θ) = Rn,ν(r)e
imθP |m|n (cosφ).

They are indexed by three integers (m,n, ν) which satisfy

0 ≤ |m| ≤ n < ν,

and correspond to eigenvalues (17).
To a fixed eigenvalue corresponds fixed ν ≥ 1 to this ν correspond ν values

of n, namely (0, 1, 2, . . . , ν− 1) and to each n correspond 2n+ 1 values of m,
namely −n,−n+ 1, . . . , n− 1, n. Thus the total dimension of the eigenspace
corresponding to an eigenvalue Eν = −1/(2ν2) is

ν−1∑
n=0

(2n+ 1) = ν2.

This has the following interpretation. To each eigenfunction corresponds
a state of an electron in an atom, and the eigenvalue E is its energy. Pauli
Principle says that there can be at most two electrons in any given state
(besides the three integers (m,n, ν) an electron also characterized by the
spin which can take only two values ±1/2. And all electrons in an atom
must have distinct triples (m,n, ν) or different spins.

So the energy level ν = 1 can have at most 2 electrons, ν = 2 at most 8,
ν = 3 at most 18. We recognize these numbers 2, 8, 18, ... as the row lengths
of the Periodic Table.

Returning to the hydrogen atom, the energy levels −1/(2ν2) has the fol-
lowing meaning. Normally the single electron will occupy the lowest level
ν = 1. When the hydrogen atom absorbs light the electron is “excited”, that
it jumps to some other level ν = k. The absorbed energy is the difference. In
general, when an electron jumps from level n to level k, the energy difference
will be

R
(

1

n2
− 1

k2

)
,

where R is the Rydberg constant which depends on the units (in our units it is
1/2). Since the energy of light quantum is proportional to its frequency, this
explains the frequencies of the Balmer series in the spectrum of hydrogen.
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The computation in this section was made for the first time by the fa-
mous mathematician Hermann Weyl, shortly after the discovery of the mod-
ern form of quantum mechanics in the work of Heisenberg, Born, Jordan,
Schrödinger and Dirac.
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