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0. Brief history

Bender and Wu (1969) studied the even

anharmonic oscillator

−w′′ + (ǫx4 + x2)w = λw, w(±∞) = 0 (1)

as a perturbation of the harmonic oscillator

(ǫ = 0). Eigenvalues are analytic functions of

ǫ > 0 but have essential singularity at ǫ = 0.

Study of such singularities led Bender and Wu

to consideration of complex potentials and

boundary conditions in the complex plane.

Eigenvalues of Problem (1), as functions of

complex ǫ, have only algebraic singularities for

ǫ 6= 0, while ǫ = 0 is a complicated non-isolated

singularity. (Simon (1970), Loeffel and Martin

(1972), Delabaere, Dillinger and Pham (1997),

Eremenko and Gabrielov (2009). Further we

refer to this last paper as EG09.)

1



1. Eigenvalue problem:

−w′′ + P (z)w = λw, (2)

w(z) → 0 as z → ∞ on L1 and L2 (3)

where P (z) = adz
d + . . . + a1z, and

Lk = {reiθk, r > 0}.

Separation rays

Re

(
∫ z

0

√

adζ
ddζ

)

= 0, that is adz
d+2 < 0,

divide the plane into d+2 sectors S0, . . . , Sd+1.

Solution w 6= 0 of (2) is subdominant in Sj if

w(z) → 0, z → ∞, z ∈ Sj.

For each j, the space of subdominant in Sj

solutions is 1-dimensional, and no solution can

be subdominant in adjacent sectors.

Definition. The rays L1, L2 are admissible for

P if they are not parallel to any separation rays

and belong to non-adjacent sectors Sj.

2



The spectrum of this problem with admissi-

ble L1, L2 is discrete and infinite. If ad = 1

and a = (a1, . . . , ad−1) then there exists an en-

tire function F , called the spectral determi-

nant, such that the spectrum is given by the

equation

F (a, λ) = 0.

The set of all solutions of this equation in the

(a, λ) space is called the spectral locus.

We study global topology of the spectral locus.

For example:

For every d ≥ 3 the spectral locus is a smooth

connected hypersurface in Cd. (Alexandersson

and Gabrielov (2010); case d = 3: EG09).

For d = 4, the spectral locus of even potentials

P consists of two disjoint smooth connected

curves in C2 (EG09).
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2. Self-adjoint and PT -symmetric problems

If P is real and L1, L2 ⊂ R, the problem is

self-adjoint and the spectrum is real.

If P (−z) = P (z), and the rays L1, L2 are inter-

changed by the reflection in iR, the problem is

called PT -symmetric.∗ In this case, the spec-

tral determinant is a real entire function but

some eigenvalues may be non-real.

For the PT -symmetric cubic potential

P (z) = iz3 + iaz and L1, L2 ⊂ R, (4)

the spectrum is real if a ≥ 0 (Case a = 0:

Dorey, Dunning, Tateo (2001); general case:

Shin (2002)).

∗P in PT stands for parity and T for time. For mathe-
matics, it does not matter which reflection to consider.
It is important that the potential and the boundary
conditions are preserved by the symmetry.
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The following computer-generated plot of the

real spectral locus of (4) is taken from Trinh’s

thesis (2002). One of our goals is to prove

that the spectral locus really looks like this.

Fig 1. Real spectral locus for PT -symmetric

cubic.
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Our method is based on “Nevanlinna parame-

trization” of the spectral locus introduced in

EG09, and “degeneration” (singular perturba-

tion) of potentials.

Degeneration results show what happens when

a → ∞ while ad is fixed. By rescaling, this is

equivalent to ad → 0, while a is bounded. So

we consider potentials

Pt(z) = tzd + czm + pt(z) (5)

where m < d, c ∈ C\{0} is fixed, deg pt < m,

coefficients of pt are bounded, and t ց 0.

We’ll give sufficient conditions for the spec-

trum of Pt to converge to the spectrum of P0

as t ց 0.

First we study the model case pt = 0, and then

extend the results to the general case.
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3. Stokes complexes of the binomials

The asymptotic behavior of solutions of the

equation −w′′ + Pw = λw depends on
∫

√

P (z) − λ dz,

which leads to the question of the structure of

trajectories of the quadratic differential

Q(z)dz2, Q = P − λ.

The zeros of Q are called turning points. Curves

where Q(z)dz2 < 0 are called vertical trajecto-

ries and curves where Q(z)dz2 > 0 horizontal

trajectories. Vertical (horizontal) trajectories

adjacent to the turning points are called the

Stokes lines (anti-Stokes lines).
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Stokes lines and turning points form the 1-

skeleton of the cell decomposition of the plane

which is called the Stokes complex. The 2-cells

of this decomposition are called faces. The

multi-valued function
∫

√

Q(z)dz

splits into single-valued branches in the faces.

Each branch maps its face onto a right half-

plane, or a left half-plane, or onto a vertical

strip.
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Examples of Stokes complexes

Fig 2. Stokes complex of z4 + iz3.

Fig 3. Stokes complex of z4 + eπi/4z3.

9



Let Q(z) = zd + czm. Consider the partition

S(Q) of the plane into open sectors and rays

defined by the Stokes lines of monomials zd dz2

and czm dz2 (i.e., by the rays where zd+2 < 0

or czm+2 < 0). Let R(Q) be the refinement of

S(Q) by the rays from the origin to non-zero

turning points.

Definitions A ray L from the origin is called

good if it is distinct from the rays of R(Q) and

is not tangent to any vertical line of Q.

A sector of R(Q) is good if each ray in it is

good.

Theorem 1. Every sector of R(Q) that con-

tains an anti-Stokes line of zd dz2 is good. Ev-

ery good ray belongs to such a sector.
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Theorem 2. If L1 and L2 are good rays for the

binomial zd + czm, then the discrete spectrum

of

Pt = tzd + czm + pt(z)

with the zero boundary conditions on L1 and

L2 depends continuously on t ≥ 0.

Convergence of the spectra means that the

spectral determinants converge uniformly with

respect to λ and coefficients of pt, when λ and

these coefficients are restricted to a compact

set.

In other words, for every eigenvalue λ0 ∈ K for

t = 0, there exists a unique eigenvalue λt which

converges to λ0 as t → 0, and this convergence

is uniform with respect to coefficients of pt

restricted to a compact set.
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Theorem 2 includes the case when P0 has no

eigenvalues. Then the conclusion means that

eigenvalues of Pt escape to infinity as t → 0.

Our proof of Theorem 2 uses a conformal change

of the independent variable

ζ =
∫ √

P − λ dz

which is due to Green and Liouville. After this

change, the problem is reduced to an integral

equation which is solved by successive approx-

imation. Theorem 1 ensures that this change

of the variable behaves continuously at t = 0,

and that the error terms in this successive ap-

proximation can be controlled uniformly.
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In our applications to spectral loci we need the

following Stokes complex:

Fig 4. Stokes complex of z3 + z2. Sectors

intersecting the imaginary axis are good.

13



4. Real spectral locus for the cubic

−w′′ + (z3 − az + λ) = 0, w(±i∞) = 0. (6)

This problem is equivalent to the PT -symmetric
problem with

P (z) = iz3 + iaz and L1, L2 ⊂ R

by the change of the variable z 7→ iz.

Theorem 3.For every integer n ≥ 0, there ex-
ists a simple curve Γn ⊂ R2, which is the image
of a proper analytic embedding of a line, and
which has these properties:
(i) For every (a, λ) ∈ Γn problem (6) has an
eigenfunction with 2n non-real zeros.
(ii) The curves Γn are disjoint and the real
spectral locus of (6) is

⋃

n≥0 Γn

(iii) The map

Γn ∩ {(a, λ) : a ≥ 0} → R≥0,

(a, λ) 7→ a is a 2-to-1 covering.
(iv) For a ≥ 0, (a, λ) ∈ Γn and (a, λ′) ∈ Γn+1
imply λ′ > λ.
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Sketch of the proof.

a) Nevanlinna parametrization of the real spec-

tral locus. Consider the following cell decom-

position Φ of the Riemann sphere, with labeled

faces. Here b = eiβ, β ∈ (0, π).

4

b
-

b

1

Fig 5. Cell decomposition Φ of the sphere.

and the following cell decompositions Ψn of

the complex plane:
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Fig 6. Cell decomposition Ψ2 of the plane.
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Labeled cell decomposition Ψn have the same

local structure as Φ, so there exists a local

homeomorphism g : C → C such that Ψn =

g−1(Φ). This g can be chosen so that it com-

mutes with the reflection z 7→ z. By the Uni-

formization Theorem, there exists a symmetric

homeomorphism φ : C → C such that f = g ◦ φ
is a real meromorphic function. According to

Nevanlinna theory, this function satisfies the

differential equation

f ′′′

f ′ − 3

2

(

f ′′

f ′

)2

= −2(z3 − az + λ)

with real a, λ. Now we have f = w/w1 where

w, w1 are two real linearly independent solu-

tions of the equation

−w′′ + (z3 − az + λ)w = 0,

and from our construction follows that w is

subdominant in the sectors intersecting the imag-

inary axis. So λ is an eigenvalue. The eigen-

function w has 2n non-real zeros, by construc-

tion. Thus we have a curve Γn in the real spec-

tral locus, parametrized by b = eiβ, β ∈ (0, π).
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That the union of these curves exhaust the

whole real spectral locus follows by reversing

the steps, and applying the classification of cell

decompositions from EG09a. This proves (i)

and (ii). (iii) follows from a result of Shin that

for a > 0 all eigenvalues are real. To show (iv)

we apply rescaling and our previous results on

the continuous behavior of the spectrum un-

der degeneration a → +∞. Real affine change

of the independent variable gives an equation

−y′′ + (tz3 + z2 + µ)y = 0, where µ is an ex-

plicit increasing function of λ. As t ց 0 this

tends to a self-adjoint problem (harmonic oscil-

lator). The convergence of spectra is justified

using Theorems 1 and 2, see Fig. 4. Then

the Sturm–Liouville theory gives the relation

between the order of eigenvalues and number

of zeros of eigenfunctions.

It remains to verify that the number of non-

real zeros of an eigenfunction does not change

in this degeneration. For this we consider the

degeneration of the cell decomposition Ψn:

18



4b= b
-

0

0

0

0

0

0

Fig 7. Degenerated cell decomposition of the

plane: the loops around b and b are replaced

by a single loop.
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0

Fig 8. Another cell decomposition for the

same cubic.
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4b= b
-

0

0

0

0

0

0

0

Fig 9. The result of collapse of the second

cell decomposition.
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5. Real spectral locus for a PT -symmetric

quartic family

This is a 2-parametric family

−w′′ +(−z4 + az2 + cz)w = −λw, w(±i∞) = 0.

(7)

It is equivalent to the PT -symmetric family

−w′′ + (z4 + az2 + icz)w = λw, w(±∞) = 0,

studied by Bender, et al (2001) and Delabaere

and Pham (1998).

Theorem 4. The real spectral locus of (7)

consists of disjoint smooth analytic properly

embedded surfaces Sn ⊂ R3, n ≥ 0, homeo-

morphic to a punctured disk. For (a, c, λ) ∈ Sn,

the eigenfunction has exactly 2n non-real ze-

ros. For large a, projection of Sn on the (a, c)

plane approximates the region 9c2 − 4a3 ≤ 0.
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Numerical computation suggests that the sur-

faces have the shape of infinite funnels with

the sharp end stretching towards a = −∞, c =

0, and that the section of Sn by every plane

a = a0 is a closed curve.

Theorem 4 implies that this section is compact

for large a0.

The following computer-generated plot is taken

from Trinh’s thesis:

Fig 10. Section of the surfaces S0, . . . , S3 by

the plane a = −9.
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Proof of Theorem 4 follows the same lines as

the proof of Theorem 3. The cell decomposi-

tions now look like this:

4 1

i

-i

b
-

b

Fig 11. Cell decomposition Φ of the sphere

for Theorem 4.

Here the Nevanlinna parameter b belongs to

the upper half-plane punctured at i, which ex-

plains why Sn is doubly connected.
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Fig 12. Cell decomposition Ψ2 of the plane

for Theorem 4.
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To study asymptotics of Sn as a and c tend to

infinity, after an affine change of the indepen-

dent variable we obtain

−y′′ + (−tz4 + z3 + αz)y = −µy.

Theorems 1 and 2 imply that the spectrum

changes continuously at t = 0.

Fig 13. Stokes complex of −z4 + z3. Sectors

intersecting the imaginary axis are good.
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0

0

i

-i

b=b
-

0

0

0

0

0

0

Fig 14. Degenerated cell decomposition for

Theorem 4.

The rescaled potential converges to the previ-

ously studied cubic potential, and we can make

conclusions about asymptotic behavior of the

spectral locus.
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