
Sturm-Liouville operators

February 19, 2021

In a previous lecture, we discussed complete orthogonal systems. In in-
finite dimensional spaces they play a role similar to the role of bases in
finite-dimensional spaces.

Now we address the question how to construct them. Two main methods
exist.

1. First method. Orthogonalization. Suppose that we have a sequence
of linearly independent vectors (vn). The process of (Gram–Schmidt) or-
thogonalization produces a new sequence (un), such that each un is a linear
combination of the first n vectors vk, and un are orthogonal. The algorithm
works as follows.

Step 1. Set u1 = v1.
Step 2. Set u2 = v2 − cu1. To make it orthogonal to u1, we write

0 = (u2, u1) = (v2, u1)− c(u1, u1),

so we choose c = (v2, v1)/(u1, u1).
Then continue in the similar way:
Step n. Set

un = vn −
n−1∑
k=1

cn,kuk,

where uk for 1 ≤ k ≤ n − 1 are already constructed in the previous steps.
Since u1, . . . , un−1 are orthogonal, we choose

cn,k =
(vn, uk)

(uk, uk)
, 1 ≤ k ≤ n− 1.

With this choice, un will be orthogonal to all uk with k ≤ n− 1.
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Example. Apply this procedure to the system vn(x) = xn on the interval
(−1, 1). Construct un for n ≤ 3.

2. Second method. Spectral Theorem for Hermitian operators.
I recall that a linear operator on a vector space V is a map L : V → V

which satisfies

L(c1x+ c2y) = c1L(x) + c2L(y), for all vectors x, y ∈ V,

and all numbers c1, c2. On the space Cn all linear operators have the form
L(x) = Ax, where A is an n× n matrix.

If for some vector v and a number λ we have

L(v) = λc, and v 6= 0,

then we say that λ is an eigenvalue of L, and v is an eigenvector corresponding
to this eigenvalue.

It is useful to have a basis of the space consisting of eigenvectors of a
given operator L. Once this is done, the action of L on any vector becomes
completely clear:

Suppose that v1, . . . , vn are eigenvectors of L with eigenvalues λ1, λn, and
v1, . . . , vn form a basis. Then every vector x can be expanded

x = c1v1 + c2v2 + . . .+ cnvn

and we have
L(x) = c1λ1v1 + . . .+ cnλnvn.

Unfortunately such a basis cannot be found for all linear operators.
The important class of operators for which it exists consists of Hermitian

operators. To define them, I recall the notion of adjoint operator. We say
that L∗ is adjoint to L if

(L(x), y) = (x, L∗(y)) for all x, y.

If L is represented by a matrix A, and the dot product is the standard one,
then L∗ is represented by Hermitian transpose which we denote A∗. It is
obtained from A by transposition and complex conjugation.

Indeed, if Cn is the space of column vectors then the standard dot product
is

(x, y) = xTy = x1y1 + . . .+ xnyn,
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and if L(x) = Ax, then we have

(L(x), y) = (Ax)Ty = xTATy = xT (ATy) == xT (A∗y) = (x, L∗(y)).

An operator L, or a matrix A is called self-adjoint or Hermitian if

L = L∗ or A∗ = A.

For example, a real matrix is Hermitian if and only if it is symmetric. Then
we have the following fundamental theorem:

Spectral theorem for Hermitian operators in a finite-dimensional
space. Let L be an Hermitian operator. Then:

a) All eigenvalues are real.
b) Eigenvectors with distinct eigenvalues are orthogonal.
c) There is an orthogonal basis of the space consisting of eigenvectors.

Let me prove a) and b) since these statements do not depend on the
assumption that the space is finite-dimensional.

To prove a), suppose that L(v) = λv. Then

(L(v), v) = (λv, v) = λ(v, v).

On the other hand

(L(v), v) = (v, L∗(v)) = (v, λv) = λ(v, v).

Since v 6= 0, we have (v, v) 6= 0 and conclude that λ = λ, so λ must be real.
To prove b), suppose that L(u) = λu and L(v) = µv, and µ 6= λ. Then

we have

λ(u, v) = (L(u), v) = (u, L∗(v)) = (u, µv) = µ(u, v),

where we used that µ is real, which was proved in part a). Since λ 6= µ, this
implies that (u, v) = 0. This proves b). So Hermitian operators can serve as
a source of orthogonal systems.

We will also need a slight generalization of this theorem. Let L be a
Hermitian operators in Cn and M a diagonal matrix with positive entries1.
Together with the usual Hermitian product we consider another product

(x, y)M = xTMy = (x,My) = m1,1x1y1 + . . .+mn,nxnyn.

1Actually, one can take any positive definite Hermitian matrix for M .
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Then we may consider the generalized eigenvalue problem

L(v) = λMv, v 6= 0. (1)

In this generalized setting, we have a complete analog of the Spectral theo-
rem:

a) All generalized eigenvalues are real.

b) Generalized eigenvectors with distinct eigenvalues are M -orthogonal, that
is (x, y)M = 0 for any such eigenvectors.

c) There is an M -orthogonal basis consisting of generalized eigenvectors.

em Exercise. Prove a) and b) by modifying the argument given above for the
special case.

3. Differential operators. Now we discuss how this theory generalizes to
infinite-dimensional spaces. We are interested in a special kind of operators,
namely second order differential operators. Let us write such an operator in
the form

L(y) = r(x)y′′ + p(x)y′ + q(x)y,

where r, p and q are some real continuous functions on an interval (a, b),
and the vector space consists of functions on an interval [a, b] with the dot
product

(f, g) =
∫ b

a
f(x)g(x)dx.

We want to know when such an operator is Hermitian, that is under what con-
ditions on p, q, and on the space of functions, we have (L(f), g) = (f, L(g)).
So we have to compute the adjoint.

First of all, since q is real, we evidently have

(qf, g) = (f, qg).

Then, integrating by parts,

(pf ′, g) =
∫ b

a
pf ′g =

∫ b

a
pgdf = pfg|ba −

∫ b

a
f(pg)′

= pfg|ba −
∫ b

a
fp′g −

∫ b

a
fpg′ = −(f, pg′ + p′g) + pfg|ba ,

where we used that p is real.
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And integrating by parts twice, we obtain

(rf ′′, g) =
∫ b

a
rf ′′g =

∫ b

a
rg df ′ = rf ′g|ba −

∫ b

a
f ′(rg)′

= rf ′g|ba −
∫ b

a
(rg)′ df = rf ′g|ba − (rg)′f |ba +

∫ b

a
f(rg)′′.

Putting this together, we obtain

(L(f), g)) = (f, L∗(g)) + terms coming from endpoints,

where

L∗(y) = (ry)′′ − py′ − p′y + qy = ry′′ + (2r′ − p)y′ + (r′′ − p′ + q)y.

This is called the formal adjoint operator to L (“formal” because we ignored
the non-integrated terms). Operator L is called formally self-adjoint if L =
L∗, that is if

p = r′.

So the general form of a formally self-adjoint operator can we written as

L(y) = (ry′)′ + qy. (2)

Exercise. According to our calculation, the operator L(y) = y′ is not formally
self-adjoint. Check that the operator L(y) = iy′, where i =

√
1 is formally

self-adjoint. The finite-dimensional analog of this statement is that if A is a
skew-symmetric matrix, that is AT = −A, then iA uis Hermitian.

Now consider the non-integrated terms. If an operator is formally self-
adjoint, then some of them vanish, and what remains gives the Lagrange
formula:

For a formally self-adjoint operator L, we have

(L(f), g) = (f, L(g)) + r(f ′g − fg′)
∣∣∣b
a

To obtain a true self-adjoint operator, we have to restrict our space of
functions, so that the non-integrated terms in the Lagrange formula vanish
for all f, g in our space. This is where the boundary conditions start playing
a role.

We state two kinds of boundary conditions which ensure that the non-
integrated term in Lagrange’s formula vanishes.
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Separated boundary conditions:

αy(a) + βy′(a) = 0, γy(b) + δy′(b) = 0,

where α, β, γ, δ are some given real numbers, α2 + β2 6= 0 and γ2 + δ2 6= 0.
Suppose that f and g both satisfy these conditions. Then, on the left end
we have

αf(a) + βf ′(a) = 0

αg(a) + βg′(a) = 0,

where we used the assumption that α and β are real. Considering this as a
system of equations with respect to α and β, we conclude that its determinant
must be 0, since (α, β) 6= (0, 0). So

f ′(a)g(a)− f(a)g′(a) = 0

and this exactly means that the contribution from the left end a in the non-
integrated term in Lagrange’s formula vanishes. Similarly, the contribution
of the right end vanishes. Such boundary conditions are called self-adjoint.

Periodic boundary conditions:

y(a) = y(b), y′(a) = y′(b).

If both f and g satisfy these conditions, then the non-integrated terms in
Lagrange’s formula cancel (contribution from a cancels with the contribution
from b).

Anti-periodic boundary conditions:

y(a) = −y(b), y′(a) = −y′(b).

Again, if both f and g satisfy these conditions, then the non-integrated terms
in Lagrange’s formula cancel.

Now we give a precise formulation of the eigenvalue problem.

Regular Sturm–Liouville boundary value problem. Let L be a for-
mally self-adjoint operator of the form (2) on a finite interval [a, b], with
r(x) > 0 for x ∈ [a, b]. Suppose that r, r′ and q are continuous on [a, b].

Let w(x) be another strictly positive continuous function on [a, b].
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Find numbers λ (eigenvalues) for which there exists a function y on [a, b]
satisfying given self-adjoint boundary conditions, and L(y) + λwy = 0.

(Following the book, we switched the sign convention for the eigenvalue
in comparison with finite dimensional case).

Notice the important assumption r(x) > 0 on the whole interval, includ-
ing the ends. The function w is called the weight. It is the analog of the
positive diagonal matrix M in (1).

The spectral theorem for this problem is the following:

Spectral theorem for regular Sturm-Liouville problems.
a) All eigenvalues λ are real.
b) Eigenfunctions φj with different eigenvalues are w-orthogonal, that is

(φj, φk) :=
∫ b

a
φj(x)φk(x)w(x)dx = 0, k 6= j.

c) Eigenvalues form an infinite sequence λn → +∞, and the correspond-
ing eigenfunctions form a complete orthogonal system in L2

w(a, b).
d) If f is in C2[a, b] (twice continuously differentiable) and satisfies the

boundary conditions, then the Fourier series2∑
n

(f, φn)wφn

converges to f uniformly.
e) For separated boundary conditions, to each eigenvalue corresponds one

eigenfunction (up to a constant multiple), and for periodic boundary condi-
tions there are at most two linearly independent eigenfunctions.

The proofs of statements a) and b) is exactly the same as in the finite-
dimensional case. Statement e) follows from the basic facts about ODE. The
set of all solutions of a linear homogeneous ODE is two-dimensional. So
under any boundary conditions, the eigenspace can have dimension at most
two.

If we have separated boundary conditions, one of them is of the form
αf(a)+βf ′(a) = 0, but from the existence and uniqueness theorem for ODE
we know that f(a) and f ′(a) can be chosen arbitrarily. Thus not all solutions
satisfy this boundary condition, so the subspace of those which do satisfy has
dimension 1.

2Notice the misprint in the book in this place (p. 90, Theorem 3.10).
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The most difficult part of the theorem is statement c). The whole Chapter
10 of the book is dedicated to the proof of it. Once c) is proved, the proof
of d) is similar to the proof of convergence theorem of Fourier series.

Read the example on p. 91 where the operator L(y) = y′′ with general
separated boundary conditions is discussed.

If one or both ends of the interval [a, b] is infinite, or if it is finite and
function r, equals 0 at this end, the Sturm–Liouville boundary value prob-
lem is called singular. Unfortunately the theory for this case is much more
complicated (it is not included in our textbook), but on the other hand, this
case is most frequently encountered in applications.

The problem is how to state the correct boundary condition on an ir-
regular end. The left end is called irregular if either a = −∞ or r(a) = 0.
Similarly for the right end.

The good news is that physical considerations and common sense usually
help to state a correct condition. Read section 3.6 of the book.
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