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We consider Riemannian metrics of constant curvature κ, with finitely
many conic singularities with angles 2παj on a compact surface S of genus g.

WLOG we assume that κ ∈ {0, 1,−1}. The goal is to understand the
space of such metrics for given κ, g and α = (α1, . . . , αn). The topology on
the space of metrics is bi-Lipschitz: two metrics ρ1, ρ2 are close if there is
a homeomorphism φ : (S, ρ1) → (S, ρ2) such that both φ and its inverse
have Lipschitz constants close to 1. We denote the space of such metrics by
Metκ,g,α.

Since each such metric defines a complex structure, we have the forgetful
map to the moduli space of Riemann surfaces of genus g with n punctures,

Metκ,g,α → Mod(g, n).

The problems we address are the following:

a) What is the topology of Metκ,g,α? In particular when it is non-empty, and
how many components it has?

b) Is the forgetful map surjective?

c) What the cardinality of the preimage of a point under the forgetful map
can be?

These problems can be restated in the language of PDE. Let z be a
(flat) conformal local coordinate of S, then a metric can be described by its
length element ρ(z)|dz| and constant curvature κ with conic singularities at
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aj means that ρ solves the following PDE

∆ log ρ+ κρ2 = 2π
n∑
j=1

(αj − 1)δaj , (1)

or equivalently ∆ log ρ+ κρ2 = 0 away from the singularities and

ρ(z) ∼ cj|z − aj|αn−1, z → aj

near the singularities.

1. Gauss–Bonnet theorem gives that

χ(S) +
n∑
j=1

(αj − 1) =
κ

2π
· area, (2)

(each singularity contributes an atom of charge 2π(1− α) to the curvature),
so one necessary condition for existence of the metric is that the LHS of (2)
has the same sign as κ.

When κ ≤ 0, there are complete answers to all our questions:
Metκ,g,α 6= ∅ if and only if the Gauss-Bonnet restriction is satisfied, that

is the LHS of (2) is negative when κ = −1 or zero when κ = 0. If this is
satisfied with κ = −1 the metric is unique, and for κ = 0 it is unique up to
a multiplicative constant.

This result is due to Picard, who wrote 4 long papers on it in 1893–1931.
Two different modern proofs were given by M. Heins in 1962 and M. Troyanov
in 1991.

When χ(S) < 0, κ = −1 and n = 0, Picard’s result is equivalent to the
uniformization theorem, and when κ = 0 to the Schwarz–Christoffel formula.

So from now on we discuss only the case κ = 1, and denote Met1,g,α by
Sphg,α.

If g = 0 and all αj ∈ (0, 1) we also have a complete result: the necessary
and sufficient condition for existence of the metric is

0 < 2 +
n∑
j=1

(αj − 1) ≤ 2 min
j
αj (3)

and when it is satisfied, the metric is unique. This is due to Feng Luo and
Gang Tian (1992). Notice the new condition on the angles in the RHS.

2



2. Developing map. Since a surface of curvature 1 is locally isometric to a
region on the standard unit sphere, an analytic continuation of this isometry
gives a multivalued holomorphic developing map

f : S\A→ C,

where A = {a1, . . . , an} is the set of singularities. The metric is recovered
from the developing map by the formula

ρ(z) =
2|f ′(z)|

1 + |f(z)|2
,

and the developing map is characterized by two properties: first in appropri-
ate coordinates on C we have

f(z) ∼ c(z − aj)αj , z → aj, 1 ≤ j ≤ n,

and the second property is that the monodromy of f consists of rotations:
this means that the result fγ of an analytic continuation of f along a path γ
satisfies

fγ = φγ ◦ f, φγ ∈ PSU(2) ≈ SO(3).

These two properties characterize all possible developing maps. Two such
developing maps f1, f2 define the same metric iff f1 = φ ◦ f2, for some φ ∈
PSU(2).

The image of the monodromy representation γ 7→ φγ is called the mon-
odromy group. It is defined up to conjugation in PSU(2).

It may happen that two developing maps f1, f2 corresponding to different
spherical metrics are related by

f1 = φ ◦ f2, where φ ∈ PSL(2)\PSU(2). (4)

One can show that this is only possible when the monodromy group is con-
jugate to a subgroup of rotations of a circle, and we call such metrics and
their developing maps co-axial. Two metrics will be called equivalent if they
satisfy (4).

General conjecture. To every conformal structure correspond finitely many
equivalence classes of metrics.

This conjecture is proved in E 2020 in the following cases: (g, n) = (1, 1)
and (g, n) = (0, n), n ≤ 4 that is exactly in those cases when the moduli
space and the space of metrics is one-dimensional.
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3. Angle restrictions for spherical metrics:

χ(S) +
n∑
j=1

(αj − 1) > 0 (5)

and
When g = 0, d1(α− 1,Zno ) ≥ 1. (6)

Here d1 is `1 distance in Rn,

α− 1 = (α1 − 1, . . . , αn − 1),

and Zno is the part of the integer lattice consisting of those points whose sum
of coordinates is odd.

Necessity of condition (6) is due to G. Mondello and D. Panov, 2016;
it generalizes various special cases obtained earlier, for example the RHS
inequality in (3) is a consequence of it.

The same authors showed that (5) and strict inequality in (6) are sufficient
for the existence of a metric, and all metrics on the sphere which satisfy (5)
with equality are co-axial.

Possible angles of co-axial metrics for g = 0 were completely described in
E 2020, see Appendix A, so we know exactly under what conditions
Sphg,α 6= ∅.

When g ≥ 1, the necessary and sufficient condition on the angles for
existence of a metric is (5), and the metric can be co-axial only when g = 1
and all αj are integers.

4. Topology of Sphg,α. In MP 2019, an example of disconnected space
Sphg,α is given. The complete description of topology of such a space is
only known when (g, n) = (1, 1). To state it we recall the notion of 2-
dimensional orbifold. It is a compact surface S equipped with a function
n : S → Z≥1∪{∞} which takes values > 1 only at finitely many points. The
orbifold Euler characteristic χO is defined as

χO = χ(S)−
∑
S

(
1− 1

n(x)

)
.

The points with n(x) ≥ 2 are called orbifold points of order n, and the points
with n(x) =∞ correspond to punctures.
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Theorem. Denote m = [(α+ 1)/2]. When α is not an odd integer, Sph1,α is
a connected orientable surface of genus [(m2−6m+12)/12] with m punctures.

It has a natural orbifold structure with one orbifold point of order 3 iff
d1(α, 6Z) > 1 and one orbifold point of order 2 iff d1(α, 2Z) > 1, and no
other orbifold points. The orbifold Euler characteristic is

χO = −m2/6.

When α = 2m is an even integer, there is a natural complex analytic
structure on Sph1,2m which turns it into a Belyi curve, and the forgetful map
is is holomorphic and even algebraic,

Theorem. Sph1,2m+1 is a manifold of dimension 3 with [m(m+1)/6] compo-
nents. Each component is D×R, where D is an open disk. The metrics are
co-axial. The set of equivalence classes of metrics consists of [m(m + 1)/6]
disks. There is a natural orbifold structure: when m ≡ 1 (mod 3), one of the
disks has an orbifold point of order 3, and there are no other orbifold points.

5. Generic angles. For positive numbers α1, . . . , αn we define the set

Critg,α := {‖αI‖ − ‖αcI‖+ 2b : I ⊂ {1, . . . , n}, b ∈ Z≥0},

where
‖αI‖ :=

∑
I

αj, cI = {1, . . . , n}\I.

Then we define the number

NBg,α = dR (χ(S\A),Critg,α) ,

where A = {a1, . . . , ak} ⊂ S and dR is the usual distance on the real line.
This number NBg,α is called the non-bubbling parameter. For example,

it is positive when there are no integer relations of the form∑
I

αj −
∑
cI

αj = integer.

Theorem. (MP 2019) If NBg,α > 0 then the forgetful map is proper.
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It is possible that NBg,α > 0, and the forgetful map is not surjective (MP
2019, Theorem D.) However we have

Theorem (Bartolucci, de Marchis, Malchidi, 2011) If g ≥ 1, and
NBg,α > 0, and all αj > 1, and

0 < 2 +
∑
j

(αj − 1) > 2 min{α1, . . . , αn, 1},

then the forgetful map is surjective.

C.-C. Chen and C.-S. Lin (2015) computed the Leray-Schauder degree
of the non-linear operator in (1) with κ = 1, which also gives the Corollary
for generic α and arbitrary g. Their formula for the degree is somewhat
complicated, and it is given in Appendix B.

6. Special cases.

a). The most interesting of known special cases where all questions are an-
swered is (g, n) = (1, 1), α = 3. It is equivalent to the case (g, n) = (0, 4), α =
(1/2, 1/2, 1/2, 3/2).

C.-S. Lin and C.-L. Wang proved in this case that the forgetful map is
injective but not surjective, and explicitly described its image. Their proof
is very complicated, and a simpler proof was obtained by Bergweiler and
Eremenko in 2016. The image is an unbounded region in C = Mod1,1 whose
boundary is an analytic curve described by an explicit equation.

This was partially generalized in EMP 2020: for Sph1,2m+1 the forgetful
map is not proper, and the boundary of its image in Mod(1, 1) is explicitly
described.

b). When g = 0, and at most 3 of the αj are not integers, the forgetful map is
complex-analytic (with respect to some natural complex-analytic structure
on Met0,α), so degree of this map is equal to the number of preimages of
a generic point. All these cases have been studied in detail by Eremenko,
Gabrielov and Tarasov. We state the result for 3 generic non-integer angles
(the rest of the angles are integers).

Suppose that α1, α2, α3 are not integers, and the rest α4, . . . , αn are inte-
gers, and no alternating sum

α1 ± α2 ± α3 is an integer.

6



Then the forgetful map is holomorphic (in fact algebraic and finite), and its
degree is the product α4 . . . αn. In particular, the generic point has α4 . . . , αn
distinct preimages.

c). An interesting special case is when g = 0 and all αn are integers. In this
case the developing map is a rational function, and the forgetful map is the
co-called Wronski map. When all αj = 2, the degree of the forgetful map is
the Catalan number (L. Goldberg, 1991), in the general case the formula is
more complicated (I. Scherbak, 2001, EGSV, 2006).

7. Some unsolved questions.

Is the forgetful map always open? Is it open when (g, n) = (1, 1)?

How to estimate the number of preimages under the forgetful map from
above? Even in the simplest case of one-dimensional spaces when the preim-
age is known to be finite (see section 2), no upper estimate is known.

What is the topology of Sph0,α when n = 4?

Appendix A. Condition on the angles for co-axial metrics on the
sphere.

Let us write α = (α1, . . . , αn) so that αj are not integers for j ≤ m, while
αm+1, . . . , αn are integers.

Theorem. For the existence of a spherical co-axial metric on the sphere
with angles α, it is necessary that:

(i) there exists a choice of signs εj ∈ {±1} and a positive integer k′ such that

m∑
j=1

εjαn = k′, (7)

and

(ii) the integer

k′′ :=
n∑

j=m+1

αj − n− k′ + 2 is even and non-negative.

If the numbers cj in

c := (c1, . . . , cq) := (α1, . . . , αm, 1, . . . , 1︸ ︷︷ ︸
k′+k′′ times

)
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are incommensurable, then (i) and (ii) are also sufficient.

(iii) If c = ηb, η 6= 0 and the coordinates of b are integers with whose greatest
common factor is 1, then there is an additional necessary condition

2 max
m+1≤j≤n

αj ≤
q∑
j=1

bj, (8)

and in this case the three conditions (i), (ii) and (8) are sufficient.

Appendix B. Leray–Shauder degree of (3) according to Chen and
Lin. Consider the following generating function

g(x) = (1 + x+ x2 + . . .)n−χ(S)
n∏
j=1

(1− xαk).

Let the the power series expansion at 0 be

g(x) = 1 + b1x
n1 + b2x

n2 + . . .+ bkx
nk + . . . .

Theorem. Suppose that NBg,α > 0. Then there exists a unique integer k
satisfying

2nk < χ(S) +
n∑
j=1

(αj − 1) < 2nk+1,

and the Leray–Schauder degree of the operator in the LHS of (3) is

d =
k∑
j=0

bj.
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