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This is an appendix to my paper [2] with the proofs of two theorems used
in that paper.

1. Theorem of Stephenson. Let f1 and f2 be meromorphic functions
in the plane. If they are both real on a non-degenerate curve γ then there
exist meromorphic functions F1, F2, φ such that Fj map the real line R to
R = R ∪ {∞}, φ(γ) ⊂ R, and

fj = Fj ◦ φ.

Let us prove this first for rational functions fj, to demonstrate the idea.
The image of (f1, f2) : C→ C×C is contained in some algebraic curve. Let

H(f, g) = 0, H 6≡ 0

be the equation of this curve. We may assume that H is irreducible. It is clear
that the curve γ contains an analytic curve, and without loss of generality we
may assume that it is simple and analytic. Let ψ be a biholomorphic map of
some neighborhood of 0 onto a neighborhood of a point on γ sending a real
interval around 0 into γ. Then functions gj = fj ◦ ψ are real on an interval
of the real line so they commute with the reflection in the real line. These
functions satisfy H(g1, g2) = 0, and they also satisfy H∗(g1, g2) = 0 where

H∗(u, v) = H(u, v).

Thus the curves H(u, v) = 0 and H∗(u, v) = 0 have infinite intersection,
namely {(f1(z), f2(z)) : z ∈ γ}, and these curves are irreducible, so they
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must coincide. We conclude that H is a real polynomial, up to a constant
factor. Now the curve H(u, v) = 0 receives a non-constant map from the
plane, so this curve considered as a Riemann surface X:

a) Must be C, or to have C as the universal cover.
b) Admits an anti-conformal involution with infinite set of fixed points.
The involution is induced by the map (u, v) 7→ (u, v) of C×C.
All anti-conformal involutions with fixed points of C or C are conjugate

to z 7→ z by conformal automorphisms.
Therefore there is a conformal map θ : C→ X which splits the complex

conjugation with the involution on X. Let f : C → X be the map induced
by (f1, f2), and Pi projections of X ⊂ C2 onto coordinate axes in C2. Then
f lifts to a map φ to the universal cover of X, we set Fi = Pi ◦ θ, and obtain
fi = Fi ◦ φ.

The problem with extending this proof to the transcendental case is that
the image of f in C × C does not have to be a curve in the usual sense.
For example, this image can be dense in C2. This is remedied essentially by
proper definitions.

The definition of “Analytische Gebilde” (analytic entity, as translated by
M. Heins) is essentially due to Weierstrass.

Let A′ be the set of pairs (f1, f2) where fi are meromorphic germs at
0 in C, which separate points in a neighborhood of 0, that is f1 and f2
have no common right compositional factor of the form zn, where n ≥ 1.
We define the equivalence relation on the set of these pairs by saying that
(f1, f2) ∼ (g1, g2) if there exists a biholomorphic germ θ : (C, 0) → (C, 0)
such that fj = gj ◦ θ, j = 1, 2. The set of equivalence classes is denoted by
A = A′/ ∼.

Topology and complex analytic structure are defined on A in the usual
way. To define a neighborhood U of (f1, f2) we consider some representatives
of fj which are holomorphic in a region D containing zero, and the neigh-
borhood is represented by pairs of germs (f1(z − c), f2(z − c)) where c ∈ D.
We obtain the map U → D assigning to the pair of germs this number c
used to define them, and this map is a coordinate chart defining the complex
structure. With this complex structure, A is a disjoint union of Riemann
surfaces. A connected component of A is called an analytic entity. There is
a natural map A→ C×C given by (f1, f2) 7→ (f1(0), f2(0)).

There is also an anti-conformal involution I : A→ A defined by

(f1, f2) 7→
(
f1(z), f2(z)

)
.
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An analytic entity is called symmetric if this involution maps it into itself.
The simple but crucial fact is that if one pair of germs in an analytic entity
is fixed by the involution then the whole analytic entity which contains this
pair is symmetric.

This is proved by an “analytic continuation”. Let (f 0
1 , f

0
2 ) be a symmetric

pair. Every other pair of the same analytic entity is obtained by a finite
sequence of pairs (fk1 , f

k
2 ) such that (fk+1

1 , fk+1
2 ) is in a neighborhood of

(fk1 , f
k
2 ) as defined above. To specify (fk+1

1 , fk+1
2 ) in this neighborhood one

chooses a representative of (fk1 , f
k
2 ) and a number ck as above. Choosing

the conjugate numbers ck and conjugate representatives leads to an analytic
continuation to the conjugate germ.

Now to prove Stephenson’s theorem, one considers the analytic entity
defined by two entire functions f1 and f2 as in the theorem. Taking the
germs at a point on γ gives a symmetric pair. So our analytic entity is a
Riemann surface with an anti-conformal involution. The proof is completed
exactly as in the algebraic case.

2. Theorem of Baker. Let f be an entire function of order less than 1
whose zeros lie in the sector | arg z − π| < π/2 − δ, for some δ > 0. If f
admits a factorization

f = F ◦ φ

with transcendental F then φ is a polynomial of degree 1.

Proof. Since the order of f is less than 1, it has infinitely many zeros. By
a theorem of Pólya, F must be of zero order, unless φ is a polynomial, so F
has infinitely many zeros wk →∞. All solutions of all equations

φ(z) = wk, k ≥ 0,

must lie in the sector | arg z − π| < π/2− δ. We may assume without loss of
generality that w0 = 0 by replacing φ by φ − w0 and F (w) by F (w + w0).
This immediately leads to a contradiction if φ is a polynomial of degree at
least 2. So in the rest of the proof we assume that φ is transcendental.

The order of φ is less than 1, so φ has infinitely many zeros, and without
loss of generality we assume that f(0) 6= 0. Then

φ(z) = c
∞∏
n=1

(
1− z

zn

)
, where

∑
|zn|−1 <∞.
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iSince each factor has absolute value at least 1 when | arg z| < δ, and tends to
∞ as z →∞ in this sector, we conclude that φ(z)→∞ as z →∞, | arg z| <
δ. Moreover,

φ′(z)

φ(z)
=
∞∑
n=1

1

z − zn
.

By the same argument that is used in the proof of the Gauss-Lucas theorem
we conclude that all zeros of φ′ belong to the left half-plane.

Let

D(z) :=
d log φ(z)

d log z
= z

φ′(z)

φ(z)
=
∞∑
n=1

z

z − zk
.

We claim that for some K > 0 we have

|D(z)| > 4π

δ
, for | arg z| < δ/2, |z| > K. (1)

Indeed, as | arg zn − π| < π/2 − δ and | arg z| < δ/2, we conclude that
| arg(z/(z − z0))| < π/2− δ/2. So

|D(z)| ≥
∞∑
n=1

Re
(

z

z − z0

)
≥ cos(δ/2)

∞∑
n=1

∣∣∣∣ z

z − zn

∣∣∣∣→∞,
as z →∞, | arg z| < δ/2, so there is K > 0 such that our claim (1) holds.

As φ(z) → ∞ as z → +∞ on the positive ray, we can find a sequence
xn > 0 such that |φ(xn)| = |wn|. Let γn be the component of the set

{z : |φ(z)| = |wn|} ∩ {z : | arg z| ≤ δ/2}

which contains xn. Then γn is a simple analytic curve with endpoints z′n
and z′′n, where arg z′n = −δ/2 and arg z′′n = δ/2. This follows because the
intersection of the level set of φ with the right half-plane is a smooth analytic
curve (φ has no critical points in the right half-plane), and this curve cannot
escape to infinity in the sector | arg z| < δ since φ(reiα) tends to ∞ in this
sector as r →∞, uniformly with respect to α.

Denoting by ∆γ an increment along γ, we have

i∆γn arg φ = ∆γn log φ =
∫ z′′n

z′n

d log φ(ζ)

d log ζ
d log ζ.

Now we notice that arg φ(z) is a strictly monotone function of the natural
parameter on γn, so, using (1) we obtain

|∆γn arg φ(z)| ≥ 4π

δ
|∆γn log z| ≥ 4π

δ
δ > 2π.
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This means equations φ(z) = wn have some solutions on γn which contradicts
to the fact that all wn-points of φ lie in the left half-plane. This proves Baker’s
theorem.
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