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Abstract. We prove a weak form of the Ahlfors conjecture on the limit set of a Kleinian
group. Let U be an invariant subset of the limit set. We show that U has empty fine
interior or the capacity of € \U is zero. In particular the limit set has empty fine interior
unless it is equal to €. The method extends to related examples such as the iteration of
rational functions and suggests a strong form of Ahlfors conjecture; the proof is strictly
two dimensional.
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1. Introduction

Consider a finitely generated Kleinian group I' of M6bius transformations
of the sphere Co. Then Ahlfors conjectured that the closed limit set A has
measure zero or is the full sphere. This problem is hard and many important
contributions have been made to understanding this and similar problems
(for example analysing the Julia set of a rational function).

This paper studies the possibility that invariant fine analytic structure
could exist in the limit set of a Kleinian group I' and more generally asks
whether the fine and conventional Fatou/Julia decomposition could differ.
The answer is no, at least in this two dimensional case and for nice families of
iterating functions (but the arguments are rather special to this dimension).

Recall that a set F is said to be thin at a point e if one can find a super-
harmonic function » which separates e from E;that is to say so that u(z) > 1
for = # e providing z € E and | # — e | is small enough while u(e) < 1. In
this case the set Cy, \ F is said to be a fine neighbourhood of e. Wiener gave a
necessary and sufficient quantitative condition in terms of logarithmic capa-
city for this to occur [8]. From Wiener’s criterion, and Beurling’s projection
lemma [2] it follows easily that in 2 dimensions, any fine neighbourhood of
e contains circles of arbitrarily small radii centred on e. In three or hig-
her dimensions the Lebesgue thorn provides a counterexample showing that
such nested spheres do not always exist. The fine neighbourhoods generate
a topology finer than the usual one called the fine topology, this topology
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has been well studied [5, 6] and is a reasonable one. A significant result is
that although not first countable, the topology is quasi-Lindelof.

The main interest in the fine topology is that the notions of harmoni-
city and holomorphy can be extended to functions defined on a finely open
set and that finely harmonic and holomorphic functions share many of the
properties of their classical counterparts. For example, finely holomorphic
functions can be defined in terms of the existence of only one complex deri-
vative, are finely open mappings, infinitely finely differentiable and uniquely
determined on a given fine component by their formal power series at a
single point [5], [7]. Finely harmonic functions satisfy an appropriate mean
value property, are finely continuous, and satisfy the maximum principle.
The composition of a finely harmonic function, with a finely holomorphic
function is always finely harmonic. Both classes are preserved under uniform
limits. The functions on a compact set K which can be uniformly approxi-
mated by harmonic functions defined on neighbourhoods of K are exactly
the continuous functions on K which are finely harmonic on the fine inte-
rior of K [4]. A bounded finely harmonic function on a classical open set
will always be a classical harmonic function. On the other hand, there do
exist finely meromorphic functions mapping the Riemann sphere Cy, to itself
which are not rational functions.

THEOREM 1. Suppose that T' is a finitely generated Kleinian group and
that A is its limit set. Suppose that U is a proper I'-invariant subset of C
in the sense that Cap(Coo \ U) > 0 and Cap(yU \ U) = 0 for every v in
I'; then either U meets the Fatou set Co, \ A or it has no fine interior. In
particular, AN U has no fine interior.

Proof: Recall that M6bius transforms map circles to circles; and that T'is
generated by a finite set To = {/; : 2 =1,...,j}. Any circle having spherical
radius less than m/2 is said to have an interior and an exterior (the smaller
and larger components of the complement respectively). In particular, as '
is a finite collection of such maps, there is an absolute radius such that if
a circle has smaller radius then the interior gets mapped to the interior by
every member of T'g.

Suppose that U is a proper I'-invariant subset of C,, and that it has
fine interior; fix  in the fine interior and a compact fine neighbourhood
K of z in U, then the elements of I' are all continuous and analytic on
a neighbourhood of K. Moreover, they all map K into U and hence omit
a common set of positive capacity. By Theorem 3 (below) one may find a
second compact fine neighbourhood L of z and on which the restrictions of
the functions in I' are a normal family. As the functions are equicontinuous
on I.. there will he a small circle Ca centred on z in L such that its image
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particular any element A of Iy will map the interior of any of these small
circles C, to the interior of another C),. A simple induction extends this to
any finite product, and hence to I' itself.

It follows that I' is equicontinuous on the interior of Cy which therefore
lies in the complementary set to A. =

Notice that the argument works just as well for the iterates of a rational
function on C,, providing one considers the interior of the rather compli-
cated curve f"(Cp) to be everything except the largest component of the
complement.

2. Equicontinuity of Holomorphic Functions Omitting a Set of
Positive Capacity

It was shown in [7] that if K is a compact subset of IR? then any uniformly
bounded family of continuous functions on K which are finely harmonic on
the fine interior of K are in fact finely equicontinuous. That is to say for any
uniformly bounded family K of finely harmonic functions continuous on K,
and for any point z in the fine interior K’ of K, there is a compact subset
L of K which is a fine neighbourhood of & and on which the family F is
equicontinuous.

It follows immediately that any family of functions F on K which extend
to be holomorphic on a neigbourhood of K and which omit a common open
set from their range will be equicontinuous on the set L.

Suppose that the family of functions F on K omit a common set E from
their range, and that although F is not open, it is of positive logarithmic
capacity. Then it is also possible, although the proof is less natural, to show
that F will be equicontinuous on the set L. This result cannot be improved
on.

Indeed, the inverse image of a set of capacity zero under a finely holo-
morphic function is easily seen to have capacity zero and countable unions
of sets of capacity zero have capacity zero; it follows that for any sequence
of finely holomorphic functions on a finely open set U and any set E of zero
capacity it is possible to delete a capacity zero (and hence finely closed and
nowhere dense) set E’ from U so that the sequence omits all valuesin E. On
the other hand it is easy to construct a sequence of holomorphic functions
which is not equicontinuous off any set of zero capacity.

Before we can give the proof of the theorem we must establish a couple
of lemmas.

LEMMA 1. Let E be a closed set of positive capacity in the complex sphere
Coo, and let H(E) denote the set of bounded continuous functions on Cy
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E. Then the function
w(r)=alog |r—a|+blog|r—y|—(a+b)log|r—z]

can be uniformly approzimated off any neighbourhood of x, y, z by a function
in H(E).

Proof: Without loss of generality, we may assume the points ,y, z are all
in the complex plane. For convenience, denote by B(e,w) the ball of radius
¢ in the usual planar metric centred on w. Now, by assumption, the capacity
of E N B(e,z) is strictly positive for any € and so there exists a probability
measure , concentrated on B(e,z)N E whose logarithmic potential p;(v) =
[log | w— v | pz(dw) is bounded. Moreover, standard potential theory tells
us we may choose fi, so that p, is a continuous function on the plane. Now,
put § = €'/2, then off B(,z) one has | py(r)—log | r—z | |< 2. It follows
that if A(r) = aps(r) + bpy(r) — (a + b)p-(r) then h € H(E) and

(1) [u(r) = h(r) 1< 2 a | + 16

off B(é,2) U B(6,y) U B(§,2). As 6 is arbitrary the proof is complete. m

LEMMA 2. Let E be a closed set of positive capacity in the complex sphere

Coo, and let H(E) denote the set of bounded continuous functions on Ceo

that are harmonic off E. Let x and y be two distinct points not in E. Then

either

A. E is a subset of a circle, x, y are conjugate relative to the circle, and
h(z) = h(y) for every function in H(E), or

B. there is a function h in H(E) such that h(z) # h(y).

Proof: Any function h € H(E) is uniquely determined by its values on E.
Suppose E is a subset of a circle, then inversion in that circle preserves H(E)
and fixes each function h in the class, hence if z, y are conjugate relative to
the circle, h(z) = h(y).

To prove that B holds if A fails we can apply the previous lemma. Fix
three regular points z, y, z in E. The functions u(r) defined above separate
the points in the disk with boundary circle through z, y, 2 as one varies a
and b. In the case where E is not contained in a circle further choices of
z, y, z allow one to separate all points off E. Because the functions u(r)
can be approximated locally uniformly by elements of H(E) the lemma is
proved. m
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THEOREM 2. The following quantity
(2) 7 =inf{sup{| h(z) — h(y) | : [| R [I< 1,h € H(E)} : d(z,y) 2 p}

is strictly positive for any choice of p (d(.,.) is the spherical distance on

Coo).

Proof: A deep theorem of Ancona [1] shows that any set E of positive
capacity contains a set of positive capacity F which is compact and regular
at all of its points. It follows that every continuous function on F' can be ex-
tended to a function in H(E) and it is enough to prove the corollary with F'
in place of E. If z, y are both in F then it is clear that sup{| h(z)—h(y) | ; ||
h lI< 1,
h € H(F)} = 2, and that if either z or y is not in F' then sup{| h(z)—h(y) [;
| A ||< 1,h € H(F)} > 0. The subset of Cy X Co comprising those
points (z,y) for which d(z,y) > p is compact, and sup{| h(z) — h(y) | ;
| h||< 1,h € H(F)} is strictly positive there. As lowersemicontinuous fun-
ctions on compact sets attain their lower bounds the infimum must also be
strictly positive. This completes the proof of the theorem. m

THEOREM 3. Let F be a family of functions which are continuous on K
(compact in Co) and finely holomorphic on the fine interior K' of K, and
suppose these functions omit a common set E of positive logarithmic capacity
from their range; then for any point x in K', there is a compact subset L of K
which is a fine neighbourhood of x and on which the family F is spherically
equiconlinuous.

Proof: Let K be a compact subset of R?, and fix a point z in the fine
interior K’ of K; then the set G of continuous functions on K uniformly
bounded by 1 and finely harmonic on the fine interior of K will be finely
equicontinous. Let L be a compact subset of K, which is also a fine neig-
hbourhood of z, and on which the family G is equicontinuous in the usual
metric topology. The claim is that the family F is also equicontinuous on
L. Let 2 € L. Choose p, and fix § so that if g is in G and y is in B(é,z)NL
then | g(z) — g(y) |< 7. Now if h € H(F) and if || h ||< 1 and if f € F
then ¢ = h(f) is in G; varying h it follows from the previous lemma that
the spherical distance d(f(z), f(y)) must be at most p. Consequently the re-
strictions of the functions in F to L are equicontinuous when thought of as
spherical functions; moreover the sphere is compact and so the Arzela—Ascoli
Theorem applies to show that they are in fact a normal family. m

The above proof establishes the equicontinuity of F in the case where the
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case we have only shown equicontinuity if we regard the functions in F as
taking their values in the quotient of C, obtained by identifying conjugate
points. We now deal with this annoying technical point.

LEMMA 3. A sequence of continuous functions F from the compact set L
into the sphere which are equicontinuous when conjugate points (with respect
to some fized circle) are identified contains a subsequence which converges
uniformly on the sphere and the given sequence is thus also equicontinuous
in the usual metric on the sphere.

Proof: Suppose a sequence of functions f; in F were equicontinuous on
L in the quotient sense but not in the usual sense. One may assume the
sequence converges uniformly in the quotient metric. Define L; to be that
subset of I where f;(l) has its limit point on the circle, and let Ly be the
complementary open set L \ L;. For each point [ in Lo, the sequence has
either one or two conjugate accumulation points, and it eventually remains
bounded away from the circle. The equicontinuity and continuity of the
functions f; ensures that on a neighbourhood U; of [ a subsequence of the
sequence will remain on one side of the circle only and so converge uniformly
in the spherical metric. Choosing a countable covering of Ly by sets U; a
simple diagonal selection argument thus shows that a subsequence of f;
converges locally uniformly on Ly and uniformly on L; and in particular
converges pointwise on the sphere to a function f.

In fact the subsequence which we again denote by f; converges uniformly
to f on L. For simplicity let the circle be regarded as the equator, and let
d, d’ be the usual spherical metric and quotient pseudo-metrics respectively.
Fix ¢, and choose N so that d'(fi, f;) < €/5 uniformly on the sphere if
i,j > N. The d'—uniform equicontinuity of the f; permits one to choose
6 so that if d(I,m) < é then d'(f;(1), fi(m)) < ¢/5. Now d(f;(1), Circle) <
d(fi(1), fi(m)) + d(fi(m), f(m)) for any m in L; and so for 7 > N and
for d(l,L1) < & one has d(fi(!),Circle) < 2¢/5 and under this hypothesis
the spherical distance between f;(!) and its conjugate is at most 4¢/5. We
conclude that the spherical distance between f;(I) and f;(l) is at most €
uniformly for d(l,L;) < é and 7,5 > N.

On the other hand the set d({,L;) > ¢é is compact in Ly and so the
subsequence f; converges uniformly there. Choose M so that the spherical
distance between f;({) and f;(I) is at most € on this set if ¢,5 > M.

It follows that the spherical distance between f;(!) and f;(!) is at most
e on all of L if 4,7 > max(N,M). The arbitrary choice of € shows that the
convergence of the subsequence was indeed uniform in the spherical metric
and that the original family was normal. m
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