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Abstract

In this paper we determine the topology of the moduli space MS1,1(ϑ) of surfaces of genus

one with a Riemannian metric of constant curvature 1 and one conical point of angle 2πϑ.

In particular, for ϑ ∈ (2m − 1, 2m + 1) non-odd, MS1,1(ϑ) is connected, has orbifold Euler

characteristic −m2/12, and its topology depends on the integer m > 0 only. For ϑ = 2m + 1

odd, MS1,1(2m+ 1) has dm(m+ 1)/6e connected components. For ϑ = 2m even, MS1,1(2m)

has a natural complex structure and it is biholomorphic to H2/Gm for a certain subgroup Gm

of SL(2,Z) of index m2, which is non-normal for m > 1.
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1 Introduction and main results

The subject of this paper is the moduli space of spherical tori with one conical point. We recall

that a spherical metric on a surface S with conical points at the points x = {x1, . . . , xn} ∈ S is

a Riemannian metric of curvature 1 on Ṡ := S \x, such that a neighbourhood of xj is isometric

to a cone with a conical angle 2πϑj > 0.

Let us immediately specify what we mean by the moduli spaceMSg,n(ϑ) of spherical surfaces

in this paper. As a set, MSg,n(ϑ) parametrizes compact, connected, oriented surfaces of genus

g with a spherical metric that has conical angles (2πϑ1, . . . 2πϑn) at marked points x1, . . . , xn.

Two surfaces correspond to the same point of the space if there is a marked isometry from one

to the other. In order to define a topology on MSg,n(ϑ), we consider the bi-Lipschitz distance

between marked surfaces, as in [16]. Such a distance defines a metric, and the corresponding

topology onMSg,n(ϑ) is called the Lipschitz topology; its properties are discussed in Section 6.

As a spherical metric defines a conformal structure on the surface, we have the forgetful map

F :MSg,n(θ)→Mg,n, where Mg,n is the moduli space of conformal structures on (S,x).

Since a neighbourhood of a smooth point on S is isometric to an open set on the sphere

equipped with the standard spherical metric, by an analytic continuation we obtain an orientation-

preserving locally isometric developing map f : Ṡ → S2. Strictly speaking, the developing map is

defined on the universal cover of Ṡ but it is sometimes convenient to think of it as a multivalued
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function on Ṡ.

The developing map defines a representation of the fundamental group of Ṡ to the group

SO(3) of rotations of the unit sphere S2. The image of this representation is called the mon-

odromy group.

The goal of this article is to provide an explicit description of the moduli space MS1,1(ϑ)

of spherical tori with one conical point.

Spherical tori with one conical point were also studied in [2, 5, 6, 11, 12, 20, 21].

1.1 Main results

Our main results consist of Theorems A-F and they are stated in the following three subsections.

1.1.1 ϑ not an odd integer

Theorem A (Topology of MS1,1(ϑ) for ϑ not odd). Take ϑ ∈ (1,∞) that is not an odd

integer and set m = bϑ+1
2 c. The moduli space MS1,1(ϑ) of spherical tori with a conical point

of angle 2πϑ is a connected orientable two-dimensional orbifold of finite type with the following

properties.

(i) As a surface, MS1,1(ϑ) has genus bm2−6m+12
12 c and m punctures.

(ii) The moduli space MS1,1(ϑ) has orbifold Euler characteristic χ(MS1,1(ϑ)) = −m2

12 . More-

over, it has at most one orbifold point of order 4 and at most one orbifold point of order

6. All the other points are orbifold points of order 2.

(iii) The moduli space MS1,1(ϑ) has one orbifold point of order 6 if and only if d1(ϑ, 6Z) > 1.

(iv) The moduli space MS1,1(ϑ) has one orbifold point of order 4 if and only if d1(ϑ, 4Z) > 1.

Note that for ϑ = 2m this theorem gives a positive answer to the question of Chai, Lin, and

Wang [2, Question 4.6.6, a], whether MS1,1(2m) is connected.

We refer to [7] for a general treatment of orbifolds. In fact we adopt a slightly more general

definition of orbifolds that includes the case in which all points can have orbifold order greater

than 1. The definition of orbifold Euler characteristic is given at page 29 of [7]. This is coherent

with the definition used, for example, in [17]. A few properties of the orbifold Euler characteristic

are listed in Remark 4.7.

Note that in [14] we used a different convention and we endowed our moduli spaces with an

orbifold structure for which the order of each point is half the number of automorphisms of the

corresponding object. Thus, the orbifold Euler characteristics computed in [14] are twice the

ones that would be obtained following the convention of the present paper.

Remark 1.1 (Orbifold structure and isometric involution). For ϑ not odd, spherical metrics

in MS1,1(ϑ) are invariant under the unique conformal involution σ of tori (see Proposition

2.17). Thus every such spherical torus is a double cover of a spherical surface of genus 0 with

conical points of angles (πϑ, π, π, π), and so the moduli space MS1,1(ϑ) is homeomorphic to

MS0,4

(
ϑ
2 ,

1
2 ,

1
2 ,

1
2

)
/S3 as a topological space. On the other hand, the orbifold order of a point in

3



MS1,1(ϑ) exactly corresponds to the number of (orientation-preserving) self-isometries of the

corresponding spherical torus. This explains why every point of MS1,1(ϑ) has even orbifold

order, as stated in Theorem A. Thus MS1,1(ϑ) is not isomorphic to the orbifold quotient

MS0,4

(
ϑ
2 ,

1
2 ,

1
2 ,

1
2

)
/S3.

An important geometric input on which Theorem A hinges is the notion of balanced spherical

triangles and Theorem B, describing the relation between spherical tori and balanced triangles.

Definition 1.2 (Spherical polygons). A spherical polygon P with angles π · (ϑ1, . . . , ϑn) is a

closed disk equipped with a Riemannian metric of constant curvature 1, with n distinguished

boundary points x1, . . . , xn which are called vertices, and such that the arcs between the adjacent

vertices are geodesics forming an interior angle πϑi at the i-th vertex. Two polygons are

isometric if there is an isometry between them that preserves the labelling.

Spherical polygons with two or three vertices are called digons or triangles1 correspondingly.

Definition 1.3 (Balanced triangles). A spherical triangle ∆ with angles π · (ϑ1, ϑ2, ϑ3) is

called balanced if the numbers ϑ1, ϑ2, ϑ3 satisfy the three triangle inequalities. If the triangle

inequalities are satisfied strictly, we call the triangle strictly balanced. If for some permutation

(i, j, k) of (1, 2, 3) we have ϑi = ϑj + ϑk we call the triangle semi-balanced. If ϑi > ϑj + ϑk for

some i, we call the triangle unbalanced.

We mention that semi-balanced triangles are called marginal in [14] and [13].

Whenever a spherical triangle is realised as a subset of a surface we will induce on it the

orientation of the surface. We will say that two oriented spherical surfaces (or polygons) are

conformally isometric (or congruent) if there is an orientation preserving isometry from one

surface (or polygon) to the other.

Terminology (Integral angles). Throughout the paper, angles will be measured in radiants.

Nevertheless, an angle 2πϑ at a conical point of a spherical surface is called integral if ϑ ∈ Z>0;

similarly, an angle πϑ at a vertex of a spherical polygon is called integral if ϑ ∈ Z>0.

Now we describe a construction that will be omnipresent in this paper.

Construction 1.4. To each spherical triangle ∆ with vertices x1, x2, x3 one can associate a

spherical torus T (∆) with one conical point by taking a conformally isometric triangle ∆′ with

vertices x′1, x
′
2, x
′
3 and isometrically identifying each side xixj with the side x′jx

′
i (in such a way

that xi is identified to x′j and xj is identified to x′i) for i, j ∈ {1, 2, 3}. The angle at the conical

point of T (∆), that corresponds to the vertices of the triangles, is twice the sum of the angles

of ∆. If ∆ is endowed with an orientation, then T (∆) canonically inherits an orientation.

1We note that spherical triangles in the sense of our definition are called sometimes Schwarz–Klein triangles, to

distinguish them from triangles understood as broken geodesic lines on the sphere. See, for instance, [13].
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To state the next result we need two more notions. Let T be a spherical torus with one

conical point. An isometric orientation-reversing involution on T will be called a rectangular

involution if its set of fixed points consists of two connected components. By a geodesic loop γ

based at a conical point x we mean a loop based at x, which is geodesic in Ṫ = T \ {x} and

which passes through x only at its endpoints.

Theorem B (Canonical decomposition of a spherical torus for non-odd ϑ). Let (T, x) be a

spherical torus with one conical point of angle 2πϑ such that ϑ ∈ (1,∞) \ (2Z + 1).

(i) If T does not have a rectangular involution, then there exists a unique (up to a re-ordering)

triple of geodesic loops γ1, γ2, γ3 based at x that cut T into two congruent strictly balanced

spherical triangles.

(ii) If T has a rectangular involution, there exist exactly two (unordered) triples of geodesic

loops such that each of them cuts T into two congruent balanced triangles. Moreover, such

triangles are semi-balanced. These two triples are exchanged by the rectangular involution.

We recall that, by [24, Section 4], the Voronoi graph associated to a spherical surface with

n conical points decomposes such surface into the union of n topological disks with one conical

point each. Indeed, the role of this Voronoi graph is analogous to the role of the critical graph

of a Jenkins-Strebel differential (a procedure that allows to build a spherical surface out of a

Jenkins-Strebel differential is described in [26]).

In order to prove Theorem B, we note that the complement of the Voronoi graph of the

spherical torus (T, x) is one disk, and that such disk can be further split into two congruent

triangles using the conformal involution of the torus. As a consequence of Theorem B, to each

spherical torus T one can associate an essentially unique balanced spherical triangle ∆(T ). Such

uniqueness will permit us to reduce the description of the moduli space MS1,1(ϑ) to that of

the moduli space of balanced triangles of area π(ϑ− 1).

1.1.2 ϑ odd integer

The case when ϑ is an odd integer is quite different, as not all spherical metrics are invariant

under the unique (nontrivial) conformal involution σ of the tori. We begin by stating our result

for metrics that are σ-invariant.

Theorem C (Topology of MS1,1(2m + 1)σ). Fix an integer m ≥ 1 and consider the moduli

space MS1,1(2m+ 1)σ of tori with a σ-invariant spherical metric of area 4mπ.

(a) As a topological space,MS1,1(2m+1)σ is homeomorphic to the disjoint union of dm(m+1)
6 e

two-dimensional open disks.

(b) MS1,1(2m+ 1)σ is naturally endowed with the structure of a 2-dimensional orbifold with

dm(m+1)
6 e connected components, which can be described as follows.

(b-i) If m 6≡ 1 (mod 3), then all components are isomorphic to the quotient D of ∆̊2 = {y ∈
R3

+ | y1 +y2 +y3 = 2π} by the trivial Z2-action. Hence, every point ofMS1,1(2m+1)σ

has orbifold order 2.
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(b-ii) If m ≡ 1 (mod 3), then one component is isomorphic to the quotient D′ of ∆̊2 by Z2×
A3, where Z2 acts trivially and A3 acts by cyclically permuting the coordinates of ∆̊2,

and all the other components are isomorphic to D. Hence, one point of MS1,1(2m+

1)σ has orbifold order 6 and all the other points have order 2.

Remark 1.5. Similarly to Remark 1.1, as a topological spaceMS1,1(2m+1)σ is homeomorphic

to MS0,4

(
m+ 1

2 ,
1
2 ,

1
2 ,

1
2

)
/S3 (though they are not isomorphic as orbifolds). Thus, Theorem C

has connection with the results contained in [2], [21], [6], [11] and [12].

The following description of the moduli space of tori with metrics that are not necessarily

σ-invariant will be deduced from Theorem C.

Theorem D (Topology of MS1,1(2m + 1)). For each positive integer m the moduli space

MS1,1(2m+ 1) is a 3-dimensional orbifold with dm(m+1)
6 e connected components.

(i) If m 6≡ 1 (mod 3), then all components of MS1,1(2m+ 1) are isomorphic to the quotient

M of ∆̊2 × R by the involution (y, t) 7→ (y,−t).
(ii) If m ≡ 1 (mod 3), then one component ofMS1,1(2m+1) is isomorphic to the quotientM′

of ∆̊2×R by Z2×A3, where Z2 acts via the involution (y, t) 7→ (y,−t) and the alternating

group A3 acts by cyclically permuting the coordinates of ∆̊2. All the other components are

isomorphic to M.

The locus MS1,1(2m+ 1)σ of σ-invariant metrics correspond to t = 0.

In order to understand what happens for spherical metrics that are not necessarily σ-

invariant, we recall the following.

Definition 1.6 (Coaxiality). A monodromy is coaxial if and only if it is contained inside a

one-parameter subgroup SO(3,R). A spherical surface is called coaxial if its monodromy is.

Note that every spherical metric with non-trivial coaxial monodromy on a surface belongs to

a 1-parameter family of metrics that induce the same CP 1-structure: we will say that metrics

in the same 1-parameter family are projectively equivalent.

In the present case, a spherical metric on a torus T with one conical point of angle 2πϑ have

non-trivial monodromy; moreover, the monodromy is coaxial if and only if ϑ is odd. This fact

is proven in [2, Theorem 5.2] and can be also deduced by combining the observations contained

in [19, page 8] with [4, Proposition 1.4]. In the present paper we reprove this statement using

an argument based on monodromy considerations (see Corollary A.2).

The above discussion shows that every spherical surface in MS1,1(2m + 1) belongs to a

1-parameter family of projectively equivalent metrics, which thus traces a copy of R inside

MS1,1(2m+ 1). Moreover, in every family there exists exactly one metric which is σ-invariant

(see Proposition 2.17). For this reason MS1,1(2m + 1)σ is isomorphic to the moduli space

MS1,1(2m+ 1)/proj of projective classes of spherical tori of area 4mπ, and so MS1,1(2m+ 1)

is three-dimensional.
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Another major difference with the non-odd case concerns the forgetful map: for ϑ non-odd

the forgetful map MS1,1(ϑ) →M1,1 is proper (see [24]) and surjective, whereas this is not so

for odd ϑ (see [20]). The boundary of MS1,1(2m+ 1)/proj inside the space of CP 1-structures

describes interesting real-analytic curves (see [2]), that are investigated in the sequel paper [14].

Theorems C-D will rely on the following result that links moduli spaces of tori to moduli

spaces of balanced triangles with integral angles.

Theorem E (Canonical decomposition of a spherical torus with odd ϑ). Fix a spherical torus

with one conical point of angle 2π(2m + 1). In the same projective class there exists a unique

spherical torus (T, x) that admits an isometric orientation-preserving involution. Moreover,

there exists a unique collection of three geodesic loops γ1, γ2, γ3 based at x that cut T into two

congruent balanced spherical triangles ∆ and ∆′ with integral angles π · (m1,m2,m3).

1.1.3 ϑ even integral

Our final main result concerns the moduli spaces MS1,1(2m), where m is a positive integer.

It is known [2, 15] that these moduli spaces have a natural holomorphic structure with respect

to which they are compact Riemann surfaces with punctures. This is the unique conformal

structure which makes the forgetful map toM1,1 holomorphic. With this structureMS1,1(2m)

is an algebraic curve.

Theorem F (MS1,1(2m) is a Belyi curve). For each integer m > 0 there exists a subgroup

Gm < SL(2,Z) of index m2 such that the orbifold MS1,1(2m) is biholomorphic to the quotient

H2/Gm. Such Gm is non-normal for m > 1. Moreover, the points in H2/Gm that project to the

geodesic ray [i,∞) in the modular curve H2/SL(2,Z) correspond to tori T such that the triangle

∆(T ) has one integral angle.

1.2 Analytic representation of spherical metrics

Let (T, x) be a spherical torus with a conical singularity at x of angle 2πϑ. The pull-back of the

spherical metric via the universal cover C = T̃ → T has area element eu|dz|2. Then function u

satisfies the non-linear PDE

∆u+ 2eu = 2π(ϑ− 1)δΛ, (1)

where δΛ is the sum of delta-functions over the lattice Λ and T is biholomorphic to C/Λ. So

our results describe the moduli spaces of pairs (Λ, u), where u is a Λ-periodic solutions of (1).

Equation (1) is the simplest representative of the class of “mean field equations” which have

important applications in physics [27].

The general solution of (1) can be expressed in terms of the developing map f : C → CP 1

related to the conformal factor u by

u = log
4|f ′|2

(1 + |f |2)2
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and the developing map f = w1/w2 is the ratio of two linearly independent solutions w1, w2 of

the Lamé equation:

w′′ =

(
ϑ2 − 1

4
℘− c

)
w, (2)

where ℘ is the Weierstrass function of the lattice Λ and c ∈ C is an accessory parameter. So

our results can be also interpreted as a description of the moduli space of projective structures

on tori whose monodromies are subgroups of SO(3,R).

Most of the known results on spherical tori are formulated in terms of equations (1) and (2).

For example, it is proved in [3] that when ϑ is not an odd integer, then the Leray–Schauder

degree of the non-linear operator in (1) equals b(ϑ + 1)/2c. An especially well-studied case is

the classical Lamé equation (2) where ϑ is an integer, see [2, 14] and references there. Solutions

of (2) with odd integer ϑ are special functions of mathematical physics, [29, 22].

1.3 The idea of the proof of Theorem A

Here we give a brief summary of the proof of Theorem A, since various parts of it stretch through

the whole paper. Fix ϑ > 1 not odd and consider spherical tori with a conical point of angle

2πϑ, and area 2π(ϑ− 1). The proof of Theorem A develops through the following steps.

• On every torus the unique non-trivial conformal involution is an isometry (Proposition

2.17 (i)).

• Every spherical torus is obtained by gluing two isometric copies of a spherical balanced

triangle with labelled vertices in an essentially unique way (Theorem B, proven in Section

2.4). Such result has a clear refinement for tori with a 2-marking (namely, a labelling of

its 2-torsion points), see Construction 4.5.

• The doubled space MT ±bal(ϑ) of balanced triangles of area π(ϑ − 1) is the double of the

space MT bal(ϑ) of balanced triangles of area π(ϑ− 1) and it describes oriented balanced

triangles up to some identifications that only involve semi-balanced triangles (Definition

3.21).

• The spaceMT bal(ϑ) is an orientable connected surface with boundary and its topology is

completely determined (Proposition 3.20) and so is the topology ofMT ±bal(ϑ) (Proposition

3.22).

• As a topological space, the space MS(2)
1,1(ϑ) of isomorphism classes of 2-marked tori is

homeomorphic to MT ±bal(ϑ) (Theorem 6.5).

• As an orbifold, MS(2)
1,1(ϑ) is isomorphic to the quotient of MT ±bal(ϑ) by the trivial Z2-

action. This allows to determine the topology and the orbifold Euler characteristic of

MS(2)
1,1(ϑ) (Theorem 4.8).

• The map MS(2)
1,1(ϑ) → MS1,1(ϑ) that forgets the 2-marking is an unramified orbifold

S3-cover, where S3 acts on MS(2)
1,1(ϑ) by permuting the 2-markings (Remark 6.28). This

allows to describe the points inMS1,1(ϑ) of orbifold order greater than 2 (Proposition 4.4)

and to determine the topology and the orbifold Euler characteristic ofMS1,1(ϑ) (Theorem

A, towards the end of Section 4.1).
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1.4 Content of the paper

The relation between spherical tori with one conical point and balanced spherical triangles is

established in Section 2, which culminates in the proof of Theorem B. The section contains

a careful analysis of the Voronoi graph of a torus and of the action of the unique non-trivial

conformal involution σ on its spherical metric.

In Section 3 we describe the topology of the space of balanced triangles of area π(ϑ− 1) and

of its double, separately considering the case ϑ non-odd and ϑ odd. Here we visualize the space

of spherical triangles with assigned area, which is a manifold, by looking at its image (which we

call carpet) through the angle map Θ. The balanced carpet will turn out to be a useful tool in

computing the topological invariants of the space of balanced triangles.

In Section 4 we describe the topology of the moduli spaces of spherical tori with one conical

point, endowed with the Lipschitz metric (which we study in Section 6). For ϑ non-odd, we first

establish a homeomorphism between the doubled space of balanced triangles and the topological

space of 2-marked tori using tools from Section 6. Then we prove Theorem A. For ϑ odd, we

first prove Theorem E using results from Section 2 and Section 3, which immediately allows us

to prove part (a) of Theorem C. Then we endow our moduli space of σ-invariant spherical tori

with a 2-dimensional orbifold structure and we prove part (b) of Theorem C. Finally, using

one-parameter projective deformations of σ-invariant spherical metrics, we put a 3-dimensional

orbifold structure on the moduli space of (not necessarily σ-invariant) tori and we prove Theorem

D.

In Section 5 we analyse the moduli space of tori with ϑ even and we prove Theorem F by

identifying it to a Hurwitz space of covers of CP 1 branched at three points. This permits us to

exhibit this moduli space as a Belyi curve and to characterize tori that sit on the 1-dimensional

skeleton of its dessin.

Section 6 deals with properties of the Lipschitz metric on moduli spaces of spherical surfaces

with conical points with area bounded from above. The main result of the section is Theorem

6.3 on properness of the inverse of the systole function. Then the treatment is specialized to tori

with one conical point of angle 2πϑ with ϑ non-odd (or with ϑ odd and a σ-invariant metric).

The section culminates with establishing the homeomorphism between the space 2-marked tori

and the doubled space of balanced triangles, needed in Section 4. A last remark explains how

to use such result to endow our moduli spaces with an orbifold structure.

In the short Appendix A we prove a general SU(2)-lifting theorem for the monodromy of a

spherical surface, and we apply to the case of ϑ odd and ϑ even to explain their special features.
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2 Voronoi diagram and proof of Theorem B

In this section we will study the Voronoi graphs of spherical tori (T, x, ϑ) with one conical point

and prove Theorem B.

2.1 Properties of Voronoi graphs, functions and domains

In this subsection we remind the definition of Voronoi graph [24, Section 4] and apply it to

spherical tori with one conical point.

Definition 2.1 (Voronoi function and Voronoi graph). Let S be a surface with a spherical

metric and conical points x. The Voronoi function VS : S → R is defined as VS(p) := d(p,x).

The Voronoi graph Γ(S) is the locus of points p ∈ Ṡ at which the distance d(p,x) is realized by

two or more geodesic arcs joining p to x. We will simply write Γ = Γ(S) when no ambiguity

is possible. The Voronoi domains of S are connected components of the complement S \ Γ(S).

Each Voronoi domain Di contains a unique conical point xi and this point is the closest conical

point to all the points in the domain.

Various properties of Voronoi functions, graphs, and domains of spherical surfaces were

proven in [24, Section 4], and the following lemma lists some of the facts needed here. To

formulate the last two properties we need one more definition.

Definition 2.2 (Convex star-shaped polygons). Let D be a disk with a spherical metric, con-

taining a unique conical point x ∈ D and such that its boundary is composed of a collection of

geodesic segments. We say that D is a convex and star-shaped polygon if any two neighbouring

sides of D meet under an interior angle smaller than π and for any point p ∈ D there is a unique

geodesic segment that joins x with p.

Proposition 2.3 (Basic properties of the Voronoi function and graph). Let S be a spherical

surface of genus g with conical points x1, . . . , xn.

(i) The Voronoi function is bounded from above by π, namely VS < π.

(ii) The Voronoi graph Γ(S) is a graph with geodesic edges embedded in S and contains at

most −3χ(Ṡ) = 6g − 6 + 3n edges.

(iii) The valence of each vertex of Γ(S) is at least three. For any point p ∈ Γ(S) its valence

coincides with the multiplicity µp, i.e., there exist exactly µp geodesic segments in S of

length VS(p) that join p with conical points of S.

(iv) The metric completion of each Voronoi domain2 is a convex and star-shaped polygon with

a unique conical point in its interior.

2The metric completion can differ from the closure of the domain inside S, see the rightmost example in Figure 2.
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(v) Let γ be an open edge of Γ(S). Let Di and Dj be two Voronoi domains adjacent to γ. Let

∆ ⊂ Di and ∆′ ⊂ Dj be the two triangles with one vertex xi or xj correspondingly, and

the opposite side γ. Then ∆ and ∆′ are anti-conformally isometric by an isometry fixing

γ.

Proof. (i) This is proven in [24, Lemma 4.2].

(ii) This is proven in [24, Lemma 4.5, Corollary 4.7].

(iii) The valence of vertices is at least three by [24, Corollary 4.7]. The valence of a point

on Γ(S) coincides with its multiplicity by [24, Lemma 4.5].

(iv) The convexity is proven in [24, Lemma 4.8]. The fact that each domain is star-shaped

follows from the fact that each point p in it can be joined by a unique geodesic segment of length

VS(p) with the conical point. Such a segment varies continuously with p, since VS(p) < π.

(v) To find the isometry between ∆ and ∆′ just notice that by definition each point p ∈ γ
can be joined by two geodesics of the same length with xi and xj . Also these two geodesics

intersect γ under the same angle. The isometry between the triangles is obtained by the map

exchanging each pair of such geodesics.

Threefoil Eight graph Eyeglasses graph

Figure 1: Voronoi graphs on a sphere with three conical points

Example 2.4 (Voronoi graph in a sphere with 3 conical points). Let S be a sphere with three

conical points. It follows from Proposition 2.3 (ii) that the Voronoi graph Γ(S) is either a trefoil

graph or an eight graph, or an eyeglasses graph, see Figure 1. Indeed, Γ(S) splits S into three

disks, and it has at most three edges.

The next definition and remark explain how to define Voronoi functions and graphs for

spherical polygons, mimicking Definition 2.1.

Definition 2.5 (Voronoi function and graph of a polygon). Let P be a spherical polygon with

vertices x. The Voronoi function VP : P → R is defined as VP (p) := d(p,x). The Voronoi graph

Γ(P ) of P consists of points p of two types: first, the points for which there exists at least two

geodesic segments of length d(p,x) that join p with x; second, the points p on ∂P for which the

closest vertex of P does not lie on the edge to which p belongs.

11



Remark 2.6 (Doubling a polygon: Voronoi function and graph). To each spherical polygon P

one can associate a sphere S(P ) with conical singularities by doubling3 P across its boundary.

Such a sphere has an anti-conformal isometry that exchanges P and its isometric copy P ′, and

fixes their boundary. It is easy to see that the function VS(P ) restricts to VP on P ⊂ S and to

VP ′ on P ′ ⊂ S. One can also check that the Voronoi graph Γ(S(P )) is the union Γ(P ) ∪ Γ(P ′).

As a result, the statements of Proposition 2.3 have their analogues for spherical polygons.

The following lemma gives an efficient criterion permitting one to verify whether a given

geodesic graph on a spherical surface is in fact its Voronoi graph.

Lemma 2.7 (Voronoi graph criterion). Let S be a spherical surface of genus g with conical

points x1, . . . , xn and let Γ′(S) ⊂ S be a finite graph with geodesic edges embedded in S. Then

Γ′(S) = Γ(S) if and only if the following two conditions hold.

(a) S \Γ′(S) is a union of disks whose metric completions are convex and star-shaped polygons

each with a unique conical point in its interior.

(b) For each point p ∈ Γ′(S) all geodesic segments, that join p with some conical point of S

and intersect Γ′(S) only at p, have the same length.

Proof. Since by Proposition 2.3 the graph Γ(S) satisfies the conditions (a) and (b), we only

need to prove the “only if” direction.

For each conical point xi let Di be the Voronoi domain of xi (namely the connected compo-

nent of S \Γ(S) that contains xi), and let D′i be the component of S \Γ′(S) containing xi. Let’s

assume by contradiction that there is a point p ∈ Di that is not contained in D′i. By definition

of Di there is a unique geodesic segment γ(p) of length VS(p) that joins p with xi. Denote by

γ′(p) the connected component of the intersection γ(p) ∩ D′i that contains xi and let p′ /∈ D′i
be the point in its closure. Clearly p′ belongs to Γ′(S). By (a) each component of S \ Γ′(S)

is star-shaped, so using (b) we get a second (different from γ′(p)) geodesic segment of length

VS(p′) that joins p′ with a conical point. Hence p′ ∈ Γ(S), which contradicts the fact that p′ is

in Di.

We proved that Di ⊂ D′i for each i. It follows that Di = D′i, hence Γ′(S) = Γ(S).

Lemma 2.8 (Voronoi graphs of a sphere with three conical points). Let S be a sphere with

three conical points xi of conical angles 2πϑi.

(i) Γ(S) is a trefoil if and only if ϑ1, ϑ2, ϑ3 satisfy the triangle inequality strictly.

(ii) Γ(S) is an eight graph if and only if ϑi = ϑj +ϑk for some permutation (i, j, k) of {1, 2, 3}.
(iii) Γ(S) is an eyeglasses graph if and only if ϑi > ϑj + ϑk for some permutation (i, j, k) of

{1, 2, 3}.
(iv) In the cases (i) and (ii) the vertices of Γ(S) are equidistant from x1, x2, x3. In the case

(iii) the vertices of Γ(S) are not equidistant from x1, x2, x3.

3Given a topological space X and a closed subset A, the doubling of X along A is obtained from X × {0, 1} by

identifying (a, 0) ∼ (a, 1) for every a ∈ A.
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Figure 2: Three types of spheres

Proof. It is enough to prove the “only if” parts of claims (i), (ii), (iii) the cases are mutually

exclusive and so the “if” part will follow as well.

For the proof of the “only if” part all three cases are treated in a similar way. Let us consider,

for example, the case when Γ(S) is a trefoil graph. Let’s show that in this case ϑi satisfy the

triangle inequality strictly. Denote the two vertices of Γ(S) as A and B. The three edges if

Γ(S) cut S into three Voronoi disks, each of which contains one conical point. Let us denote

these three segments of Γ(S) by γ1, γ2, γ3, as it is shown on the leftmost picture in Figure 2.

Let us join each of the xi with the vertices A and B by geodesics xiA, xiB of lengths VS(A)

and VS(B) correspondingly. These geodesic segments are depicted in gray.

Consider now the spherical quadrilaterals Ax3Bx1, Ax1Bx2 and Ax2Bx3 into which the

gray geodesics cut S. It follows from Proposition 2.3 (v) for i, j ∈ {1, 2, 3} that the angles

of AxiBxj at xi and xj are equal. This implies that ϑ1, ϑ2, ϑ3 satisfy the triangle inequality

strictly.

(ii, iii) In a similar way one treats the cases when Γ(S) is an eight graph or an eyeglasses

graph, the corresponding two pictures are shown in Figure 2.

(iv) This is clear from the way Γ(S) is embedded in S, see Figure 2. In particular, if Γ(S)

is an eyeglasses graph, d(A, x1) = d(A, x3) < d(A, x2) and d(B, x2) = d(B, x3) < d(B, x1).

2.2 The circumcenters of balanced triangles

It is well-known that the circumcenter of a Euclidean triangle ∆ is contained in ∆ if and only ∆

is not obtuse. Moreover, in the case when ∆ is right-angled, the circumcenter is the mid-point

of the hypotenuse. It is also a classical fact that the circumcenter of a Euclidean triangle is the

point of intersection of the axes4 of its sides. The next theorem is a generalisation of the above

4The axis of a segment is the perpendicular through the midpoint of such segment.
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statements to spherical triangles. By an involutive triangle we mean a triangle that admits an

anti-conformal isometric involution that fixes one vertex and exchanges the other two5.

Theorem 2.9 (Circumcenters of balanced triangles). Let ∆ be a spherical triangle with vertices

x1, x2, x3.

(i) The triangle ∆ contains a point O equidistant from x1, x2, x3 if and only if ∆ is balanced.

(ii) The point O (equidistant from x1, x3, x3) is in the interior of ∆ if and only if ∆ is strictly

balanced. The point O is the midpoint of a side of ∆ if an only if ∆ is semi-balanced.

(iii) If ∆ is strictly balanced, then the geodesic segments Ox1, Ox2, Ox3 cut ∆ into three invo-

lutive triangles.

(iv) Suppose that ∆ is semi-balanced and the angle ∠xi = πϑi is the largest one. Then O is

the midpoint of the side opposite to xi, and xiO cuts ∆ into two involutive triangles.

To prove this theorem we need the following lemma.

Lemma 2.10 (Some isosceles triangles are involutive triangles). Let ∆ be a spherical triangle

with vertices q1, q2, q3 and denote by |qiqj | the length of the side qiqj. Suppose that |q1q2| =

|q1q3| < π and ∠q1 < 2π. Then there is an isometric reflection τ of ∆ that fixes q1 and exchanges

q2 with q3. In particular ∠q2 = ∠q3. Moreover, τ pointwise fixes a geodesic segment that joins

q1 with the midpoint of q2q3 and splits ∆ into two isometric triangles. Furthermore, |q2q3| < 2π.

Proof. Consider first the case when ∠q1 = π. In this case ∆ can be isometrically identified with

a digon so that q1 is identified with the midpoint of one of its sides. Since each digon has an

isometric reflection fixing the midpoints of both sides, the lemma holds.

From now on we assume that ∠q1 6= π. Consider the unique spherical triangle ∆′ ⊂ S2 with

vertices q′1, q
′
2, q
′
3 such that |q′1q′2| = |q′1q′3| = |q1q2|, ∠q′1 = ∠q1, and Area(∆′) < 2π. We will

show that ∆′ admits an isometric embedding into ∆ that sends q′i to qi. This will prove the

lemma since this implies that ∆ is isometric to a triangle obtained by gluing a digon to the side

q′2q
′
3 of ∆′. And such a triangle clearly has an isometric reflection τ . This will also prove that

|q2q3| < 2π, since |q′2q′3| < 2π and either |q2q3| = |q′2q′3| or |q2q3|+ |q′2q′3| = 2π.

To prove the existence of the embedding, denote by ι : ∆ → S2 the developing map of

triangle ∆. We may assume that ι(qi) = q′i, ι(q1q2) = q′1q
′
2, and ι(q1q3) = q′1q

′
3. Note that ι

sends q2q3 to the unique6 geodesic circle that contains ι(q2) and ι(q3). Hence, it is not hard to

see that the preimages of ∆′ in ∆ form a union of some number of isometric copies of ∆′. One

of them, that contains sides q1q2 and q1q3 of ∆, is the embedding we are looking for.

Remark 2.11. We note that this lemma is sharp in the sense that none of the two conditions

|q1q2| = |q1q3| < π and ∠q1 < 2π can be dropped.

5Note that every Euclidean or hyperbolic isosceles triangle admits an isometric involution exchanging the equal

sides. This is not the case for spherical triangles, for example the triangle with angles 5π/2, 13π/2, 9π/2 is equilateral

but clearly has no symmetries.
6This circle is unique since ∠q1 6= π, and also it intersects the segments q′1q

′
2, q

′
1q

′
3 only at the points q′2, q

′
3.
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Proof of Theorem 2.9. (i) Let S(∆) be the sphere obtained by doubling ∆ across its boundary,

i.e., by gluing ∆ with the triangle ∆′ that is anti-conformally isometric to ∆. Then by Remark

2.6 the graph Γ(S(∆)) is the union of Γ(∆) with Γ(∆′).

Suppose first that ∆ contains a point O equidistant from all xi’s. Then, since the restriction

of VS(∆) to ∆ equals V∆, we see that O is equidistant from xi on S as well. So by Proposition

2.3 (iii) the point O corresponds to a vertex of Γ(S(∆)) of multiplicity at least 3. Furthermore,

by Lemma 2.8 (iv) we conclude that Γ(S) is either a trefoil or an eight graph. Hence again by

Lemma 2.8 the triangle ∆ is balanced.

Suppose now that ∆ is balanced, i.e., ϑ1, ϑ2, ϑ3 satisfy the triangle inequality. Then by

Lemma 2.8 (i), (ii) the graph Γ(S(∆)) is a trefoil or a eight graph, and so by Lemma 2.8 (iv)

there is a point O in S equidistant from all xi. It follows that ∆ contains such a point as well.

(ii) We first prove the “only if” direction. Suppose that O is in the interior of ∆. Then

Γ(S(∆)) has two vertices of valence 3. So according to (i), Γ(S(∆)) is a trefoil. Hence, ∆ is

strictly balanced by Lemma 2.8 (i).

Suppose that O is on the boundary of ∆. Without loss of generality assume that O is on

the side of ∆ opposite to x1. For i = 1, 2, 3 let γi be the geodesic segment of length V∆(O) that

joins O with xi. Let γ′i be the image of γi in ∆′ ⊂ S(∆) under the anti-conformal involution.

Since the multiplicity of O in Γ(S) is at most 4 we conclude that γ2 = γ′2, γ3 = γ′3. Hence, O is

the midpoint of the side x2x3.

To prove the “if” direction one needs to apply Lemma 2.8 (iv). Indeed, if ∆ is strictly

balanced, Γ(S(∆)) has two vertices of multiplicity 3 and one of them lies in ∆. If ∆ is semi-

balanced, Γ(S(∆)) has one vertex and it has to lie on the boundary of ∆.

Figure 3: Voronoi graphs of balanced triangles

(iii) Since ∆ is strictly balanced, by (ii) there is a point O in the interior of ∆ equidistant

from points x1, x2, x3. Since V∆(O) < π, we have |Ox1| = |Ox1| = |Ox3| < π. Hence all three

isosceles triangles xiOxj are involutive triangles by Lemma 2.10.

(iv) This proof is identical to the proof of (iii) and we omit it.

Remark 2.12. Theorem 2.9 can be used to construct the Voronoi graph Γ(∆) of a balanced

triangle ∆ with vertices x1, x2, x3. Indeed, according to this theorem, the geodesic segments
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Oxi cut ∆ into three or two involutive triangles, and using a variation of Lemma 2.7 one can

show that Γ(∆) is the union of symmetry axes of these triangles. See Figure 3.

We will see that some results we are interested in about balanced triangles indeed concern

the following class of triangles.

Definition 2.13 (Short-sided triangles). A spherical triangle short-sided if all its sides have

length li < 2π. In this case, we set l̄i := min(li, 2π − li).

Theorem 2.9 has the following two simple corollaries.

Corollary 2.14 (Balanced triangles are short-sided). Let ∆ be a balanced triangle with vertices

x1, x2, x3. Then ∆ is short-sided, i.e. |xixj | < 2π.

Proof. Let us treat the case when ∆ is strictly balanced. The semi-balanced case is similar. By

Theorem 2.9 (iii) the triangle ∆ can be cut into 3 involutive triangles xiOxj where ∠O < 2π

and |Oxi| = |Oxj | < π. Applying Lemma 2.10 to the triangle xiOxj we conclude that |xixj | <
2π.

Corollary 2.15 (Short geodesic in a balanced triangle). Let ∆ be a balanced triangle with

vertices x1, x2, x3. Suppose that {i, j, k} = {1, 2, 3} and such that the value l̄k = min(|xixj |, 2π−
|xixj |) is minimal. Then there is a geodesic segment γ∆ in ∆ that joins xi with xj and such

that `(γ∆) = l̄k ≤ 2π/3, which in fact realizes the minimum distance between distinct vertices.

Proof. Let us again treat the case when ∆ is strictly balanced. Let xiOxj be three involutive

triangles in which ∆ is cut. Consider the developing map ι : ∆→ S2. Then for each {i, j, k} =

{1, 2, 3} the value l̄k is equal to the distance between ι(xi) and ι(xj) on S2, and so d(xi, xj) ≥
d(ι(xi), ι(xj)) = l̄k. For this reason, it is not hard to see, that the minimum of the value l̄k is

attained for the triangle xiOxj for which the angle at O is the minimal one. In particular in

such a triangle the angle at O is at most 2π/3. It follows that there is a geodesic segment γ∆ in

such a triangle xiOxj of length less than 2π/3 that joins xi and xj . Since it cuts out of xiOxj

a digon with one side xixj we conclude that `(γ∆) = l̄k = d(xi, xj).

2.3 Isometric conformal involutions on tori

In this short section we prove the following useful proposition.

Lemma 2.16 (Invariance of projective structures on one-pointed tori). Let (T, x) be a flat

one-pointed torus and let σ be its unique nontrivial conformal involution. Then every projective

structure on T whose Schwarzian derivative has at worst a double pole at x is invariant under

σ.

Proof. We represent our torus T as C/Λ where Λ is a lattice in C, and suppose that x corresponds

to the lattice points. We also endow T with the corresponding projective structure.
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The involution σ pulls back to the map z 7→ −z on T̃ = C. The Schwarzian derivative

(see, for example [8]) of a projective structure is a quadratic differential on the torus T . By

hypothesis, it has at worst a double pole at x. The vector space of such quadratic differentials

is 2-dimensional, generated by the constants and the Weierstrass elliptic function. Hence, all its

elements are invariant under the involution σ, and so are all solutions of the associated Schwarz

equations. As a consequence, all such projective structures are σ-invariant.

Proposition 2.17 (Spherical metrics and conformal involution). Let σ be the unique conformal

involution of a spherical torus T that fixes the unique conical point x.

(i) If ϑ /∈ 2Z + 1, then σ is an isometry.

(ii) If ϑ ∈ 2Z + 1, then each projective equivalence class of spherical metrics is parametrized

by a copy of R, on which σ acts as an orientation-reversing diffeomorphism. Thus, σ is

an isometry for a unique spherical metric in its projective equivalence class.

Proof. Consider the projective structure associated to a spherical metric on (T, x). By Lemma

2.16, such projective structure is σ-invariant.

(i) Every spherical metric is non-coaxial by Lemma A.2, and so in each projective equivalence

class there is at most one spherical metric. Hence, such metric must be invariant under σ.

(ii) Fix a spherical metric h in MS1,1(2m + 1). Let ˜̇T be the universal cover of Ṫ and let

T̂ be its completion: denote by x̂i the points in ∂T̂ = T̂ \ ˜̇T , which project to x ∈ T . Pick a

developing map ι for h, which in fact extends to ι̂ : T̂ → S2 ∼= CP1, and let ρ be the associated

monodromy representation.

By Lemma A.2, the monodromy ρ is coaxial but non-trivial. Fix an element α of π1(T ) such

that ρ(α) = eX 6= I with X ∈ su2. Up to conjugation, we can assume that ∞ ∈ CP1 is the

attracting point and 0 ∈ CP1 is the repelling point for ρ(α)′ := eiX . The orbits of the group

(etX) on CP1 \ {0,∞} will be called “parallels” and the unique geodetic orbit will be called

“equator”.

First, we claim that ι̂(x̂i) 6= 0,∞ for all x̂i ∈ ∂T̂ and they all sit on the same parallel.

In fact, the holomorphic vector field z ∂
∂z on CP1 is invariant for the monodromy, and so its

pull-back descends to a non-zero holomorphic vector field V on Ṫ , possibly with a pole in x. If

ι̂(x̂i) ∈ {0,∞}, then V would have a zero at x, against χ(T ) = 0. The second assertion is clear,

since ι̂(∂T̂ ) is an orbit for the action of the monodromy.

Second, note that all spherical metrics (ht)t∈R projectively equivalent to h have developing

maps etι and monodromy representation ρ. Thus, up to replacing h by some ht0 , we can assume

that ι̂(∂T̂ ) is contained inside the equator.

The function d : CP1 → [0, π] that measures the distance from the repelling point of ρ(α)′

is invariant for the monodromy action, and so its pull-back via ιt to T̂ descends to a function

dt : T → [0, π]. We observe that t can be recovered from dt(x) via et = tan(dt(x)/2).

Now, (ρ ◦ σ)(α) = ρ(α)−1 = e−X . Thus, when considering the developing map (etι) ◦ σ with

monodromy representation ρ ◦ σ, the attracting point of (ρ ◦ σ)(α)′ is 0 and the repelling point

is∞. It follows that the distance of (etι̂)◦σ(x) = etι̂(x) from the repelling point∞ is π−dt(x).
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Hence, (etι) ◦ σ is a developing map for h−t. It follows that σ acts on the family of metrics

(ht)t∈R by sending ht to h−t, and so fixing the unique metric h0, whose developing map sends

∂T̂ to the equator. It follows that σ acts on (T, x, ht) as an isometry if and only if t = 0.

Proposition 2.17(ii) was also proved in [2, Theorem 5.2]. See also [12, Theorem 1].

2.4 Proof of Theorem B

The goal of this section is to prove Theorem B and to make preparations for the proof of

Theorem C. Throughout the whole section we will mainly consider the class of tori that have

a conformal isometric involution. By Proposition 2.17 we know that such an involution exists

automatically in the case when the conical angle is not 2π(2m+ 1). We start with the following

simple lemma.

Lemma 2.18 (Points of Γ fixed by a conformal isometric involution). Let S be a spherical

surface with conical points x that admits an isometric conformal involution σ. Let p be a point

in Ṡ = S \ x fixed by σ. Then p belongs to Γ(S), its multiplicity µp is even, and there exist

exactly
µp
2 geodesic segments or loops7 of lengths 2VS(p) < 2π based at x and passing through

p. The point p cuts each such geodesic segment into two halves of equal length.

Proof. Consider any geodesic segment γ of length VS(p) that joins p with one of the conical

points. Since σ(γ) 6= γ we see that p belongs to Γ(S). If p is not a vertex of Γ(S) then γ and

σ(γ) are the only two geodesic segments of length VS(p) that join p with x. Clearly, since σ is

a conformal involution the union γ ∪ σ(γ) is a geodesic segment or loop based at x. Its length

is less than 2π by Proposition 2.3 (i).

The case when p is a vertex of Γ(S) is similar. Since σ is a conformal involution and it sends

Γ(S) to Γ(S) we see that the valence of p in ΓS is even. By Proposition 2.3 (iii) the number

µp of geodesic segments of length VS(p) that join p with x is equal to this valence. Clearly,

altogether these µp segments form
µp
2 geodesic segments (or loops) of length 2VS(p) for all of

which p is midpoint.

Now, we concentrate on the case of spherical tori with one conical point. It will be convenient

for us to recall first the construction of hexagonal and square flat tori.

Example 2.19 (Flat hexagonal and square tori). Let T6 and T4 be the flat tori obtained by

identifying opposite sides of a regular flat hexagon and a square correspondingly. Denote by

Γ6 ⊂ T6 and Γ4 ⊂ T4 the graphs formed by the images of polygons boundaries. Then it is easy

to check that Γ6 and Γ4 are Voronoi graphs in T6 and T4 with respect to the images of the

centres of the polygons.

Lemma 2.20 (Voronoi graph of a spherical torus). Let T be a spherical torus with one conical

point and let Γ be its Voronoi graph. Then Γ is either a trefoil or an eight graph. In the first

7We always assume that a geodesic loop or segment can intersect x only at its endpoints.
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case the pair (T,Γ) is homeomorphic to the pair (T6,Γ6). In the second case it is homeomorphic

to the pair (T4,Γ4).

Proof. By [24, Corollary 4.7] the Voronoi graph Γ has at most three edges and two vertices.

Since the complement to the Voronoi graph is a disk, the graph has at least two edges.

Suppose first that Γ has three edges. By [24, Corollary 4.7] the vertices of Γ have multiplicity

at least 3, so Γ is a trivalent graph with two vertices, i.e., a trefoil or an eyeglasses graph. Note

that the punctured torus Ṫ is homeomorphic to a thickening Th(Γ) of Γ, and such Th(Γ) is

uniquely determined by choosing a cyclic ordering of the half-edges incident at each vertex of Γ.

Now, up to isomorphism such cyclic ordering is unique for the eyeglass graph, and its thickening

is homeomorphic to a three-punctured sphere. Hence Γ must be a trefoil.

It is easy to see that Th(Γ) can be endowed with a metric so that, if we cut along Γ, we

obtain a flat regular hexagon with its center removed. If T̂h(Γ) is the completion of Th(Γ)

obtained by adding one point, then (T6,Γ6) is homeomorphic to (T̂h(Γ),Γ), which in turn is

homeomorphic to (T,Γ).

The case when Γ has two edges is similar.

The following is the main proposition on which the proof of Theorem B relies.

Proposition 2.21 (From tori to balanced triangles). Let (T, x) be a spherical torus with one

conical point x and suppose that T has a non-trivial isometric conformal involution σ. Let Γ(T )

be the Voronoi graph of T .

(i) Suppose Γ(T ) is a trefoil. Then σ permutes the two vertices of Γ(T ), and fixes the mid-

points p1, p2, p3 of the three edges of Γ(T ). Moreover, there exist exactly three σ-invariant

simple geodesic loops γ1, γ2, γ3 based at x such that γi intersects Γ(T ) orthogonally at

pi. These geodesic loops cut the torus into the union of two congruent strictly balanced

triangles that are exchanged by σ.

(ii) Suppose Γ(T ) is an eight graph with the vertex A. Then σ fixes the vertex and the mid-

points p1, p2 of the two edges of Γ(T ). Moreover there exist four σ-invariant simple geodesic

loops γ1, γ2, η1, η2 based at x and uniquely characterised by the following properties. Each

geodesic γi intersects Γ(T ) orthogonally at pi. Each geodesic ηi passes through A and has

length 2d(A, x). Moreover, for i = 1, 2 the triple of loops γ1, γ2, ηi cuts T into the union

of two congruent semi-balanced triangles that are exchanged by σ.

(iii) T has a rectangular involution if and only if its Voronoi graph is an eight graph. For a

torus T with a rectangular involution the triangles in which γ1, γ2, η1 cut T are reflections

of the triangles in which γ1, γ2, η2 cut T .

Proof. (i) Since σ is an isometry of T it sends Γ(T ) to itself. Let’s denote the vertices of Γ(T ) by

A and B. Since their valence is 3 and σ is a conformal isometric involution, σ can fix neither A

nor B. Indeed, begin σ of order 2, if σ fixed A, then it would fix at least one half-edge outgoing

from A, and so it would be the identity. Hence σ permutes A and B, which implies in particular

that A and B are at the same distance from x.
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Next, since σ is an orientation preserving involution, and Γ(T ) is a trefoil, from simple

topological considerations it follows that σ sends each edge γi of Γ(T ) into itself. It follows that

the midpoints of the edges p1, p2, p3 are fixed by σ.

Figure 4: Trefoil case

Let us now cut T along Γ(T ) and consider the completion D̄ of the obtained open disk.

Clearly, D̄ is a spherical hexagon with the conical point x in its interior. Moreover, σ induces

an isometric involution on D̄ without fixed points on ∂D̄. It follows that σ sends each vertex

of D̄ to the opposite one.

Next, let’s denote the vertices of D̄ by A1, B2, A3, B1, A2, B3 as is shown in Figure 4. Here

all the points Ai correspond to A and Bi to B when we assemble T back from the disk. In a

similar way we mark midpoints of the sides of D̄ by p′i and p′′i .

According to Lemma 2.18, for each i there is a geodesic loop γi of length 2d(pi, x) based at

x for which pi is the midpoint. Let us show that γ1, γ2, γ3 cut T into two equal strictly balanced

triangles whose vertices are identified to the point x.

Indeed, the first triangle, which we will call ∆A, is assembled from three quadrilaterals

A1p
′′
3xp
′
2, A2p

′′
1xp
′
3, A3p

′′
2xp
′
1. The second triangle ∆B is assembled from the remaining three

quadrilaterals. Clearly, σ(∆A) = ∆B, so these two triangles are congruent.

Finally, ∆A is strictly balanced according to Theorem 2.9 (i), indeed the point A lies in the

interior of ∆A and is at distance d(A, x) from all the vertices of ∆A.

(ii) Let us now consider the case when Γ(T ) is an eight graph with a vertex labelled by A.

Clearly, A is fixed by σ since this is the unique point of Γ(T ) of valence 4.
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Figure 5: Eight graph case

As before we see that the midpoints p1, p2 of the two edges of Γ(T ) are fixed by σ and this

gives us two σ-invariant geodesic loops γ1 and γ2. To construct η1 and η2 we apply Lemma 2.18

to the point A.

Now let us cut T along the Voronoi graph Γ(T ) and consider the completion D̄ of the

obtained open disk. Clearly, this disk is a quadrilateral with one conical point in the interior.

Let us mark the vertices of this quadrilateral and the midpoints of its edges as it is shown in

Figure 5.

As before, the loops γ1, γ2, η1 cut T into two congruent triangles exchanged by σ. To show

that these triangles are semi-balanced consider one of these triangles obtained as a union of two

triangles A1xp
′′
2, A3xp

′′
1 and the quadrilateral xp′1A2p

′
2. To assemble this triangle one has to

identify the pairs of sides (A1p
′′
2, A2p

′
2) and (A2p

′
1, A3p

′′
1). The resulting triangle is semi-balanced

by Theorem 2.9 (ii).

(iii) Suppose first that Γ(T ) is an eight graph. Then we are in the setting of the case 2 of

this proposition. Let us construct an involution τ1 of D̄ that fixes pointwise γ1. We define τ1 so

that τ1(A1) = A2, τ1(A3) = A4. Then in order show that τ1 extends to D̄ it is enough to show

that the triangle A1xA4 is isometric to A2xA3 and that the geodesic γ1 is the axis of symmetry

of both triangles A1xA2 and A3xA4. The former statement follows from Proposition 2.3 (v).

To prove the latter statement, note again that A1xA2 is isometric to A4xA3 by Proposition 2.3

(v) and then compose this isometry with σ. This induces desired reflections on both triangles

A1xA2 and A4xA3. The involution τ2 fixing γ2 is constructed in the same way.

Suppose now that T has a rectangular involution τ . Let us show that Γ(T ) is an eight graph.

Since τ is a rectangular involution, its fixed locus is a union of two disjoint geodesic loops. One

of these loops passes through x while the other one, say ξ, is a simple smooth closed geodesic.

For any point p ∈ ξ there exist at least two length minimizing geodesic segments that join it
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with x (they are exchanged by τ). It follows that ξ lies in Γ(T ). And since a trefoil graph can’t

contain a smooth simple closed geodesic, we conclude that Γ(T ) is an eight graph.

Later we will need the following statement, which is a part of the proof of Proposition 2.21.

Remark 2.22. Suppose we are in the case (ii) of Proposition 2.21. Consider the four sectors in

which geodesic loops η1 and η2 cut a neighbourhood of x. Then for each i = 1, 2 the geodesic

loop γi bisects two of these sectors.

The final preparatory proposition of this subsection is the converse to Proposition 2.21.

Proposition 2.23 (From balanced triangles to tori). Let ∆ be a balanced triangle and let ∆′

be a triangle congruent to it. Let T (∆) be the torus obtained by identifying the sides of ∆ and

∆′ through orientation-reversing isometries.

(i) The Voronoi graph Γ(T (∆)) coincides with the union in T (∆) of Γ(∆) and Γ(∆′).

(ii) If ∆ is strictly balanced then the Voronoi graph Γ(T (∆)) has two vertices. Moreover, the

images of the three sides of ∆ in T (∆) coincide with three canonical geodesic loops γ1, γ2, γ3

on T (∆) constructed in Proposition 2.21 (i).

(iii) If ∆ is semi-balanced then Γ(T (∆)) has one vertex. Moreover the images of the three sides

of ∆ in T (∆) coincide with three canonical geodesic loops γ1, γ2, ηi on T (∆) constructed

in Proposition 2.21 2). Here the side of ∆ opposite to the largest angle of ∆ corresponds

to ηi.

Figure 6: Two isomorphic triangles ∆ and ∆′

Proof. (i) Assume first that ∆ is strictly balanced. Let Γ̌ be the graph obtained as the union

Γ(∆) ∪ Γ(∆′). In order to prove that Γ̌ = Γ(T (∆)), it is enough to show that Γ̌ satisfies the

properties (a) and (b) of Lemma 2.7.

Recall that by Theorem 2.9 (ii) there is a point O in the interior of ∆ that is equidistant

from points xi. Denote by pi and p′i the midpoints of sides opposite to xi and x′i as in Figure 6.

Then by Remark 2.12, Γ(∆) is the union of the segments Opi and Γ(∆′) is the union of the

segments Op′i. It follows that T (∆) \ Γ̌ is a convex and star-shape with respect to x, which
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means that property (a) of Lemma 2.7 holds. As for property (b), it holds since Γ(∆) and Γ(∆′)

are Vornoi graphs of ∆ and ∆′.

The case when ∆ is semi-balanced case is treated in the same way, so we omit it.

(ii) Since ∆ is strictly balanced, it follows from (i) that Γ(T (∆)) has two vertices. Now, it

follows from (i) that for any permutation {i, j, k} the side xixj ⊂ T (∆) intersects an edge of

Γ(T (∆)) at its midpoint and it is orthogonal to it at this point. Hence, by Proposition 2.21 (ii)

each geodesic xixj coincides with the geodesic loop γk.

(iii) The proof of this result is similar the case (ii) and we omit it.

Remark 2.24. We note that the statement of Proposition 2.23 does not hold for any unbalanced

triangle. Indeed, if ∆ is unbalanced one can still construct a torus T (∆) from ∆ and its copy

of ∆′. However, the union of the Voronoi graphs of ∆ and ∆′ will be an eyeglasses graph in

T (∆). Such a graph can never be the Voronoi graph of a torus with one conical point.

Now we are ready to prove Theorem B.

Proof of Theorem B. Let T be a spherical torus with one conical point of angle 2πϑ with ϑ /∈
2Z + 1. According to Proposition 2.17, there exists a conformal isometric involution σ on T .

Hence we can apply Proposition 2.21. In particular, by Proposition 2.21 (iii) the torus T has a

rectangular involution if and only if Γ(T ) is an eight graph.

(i) The Voronoi graph Γ(T ) of T is a trefoil and we get a collection of three geodesics γ1, γ2, γ3

that cut T into two congruent strictly balanced triangles. Such a collection of geodesics is unique

on T by Proposition 2.23.

(ii) The Voronoi graph Γ(T ) is an eight graph, and by Proposition 2.21 we get two triples

of geodesics γ1, γ2, η1 and γ1, γ2, η2 both cutting T into two congruent semi-balanced triangles.

Again, it follows from Proposition 2.23 that these two triples are the only ones that cut T into

two isometric balanced triangle, and they are exchanged by the rectangular involution.

3 Balanced spherical triangles

The main goal of this section is to describe the space of balanced spherical triangles with assigned

area. To do this, we recall in Section 3.1 several theorems describing the inequalities satisfied by

the angles of spherical triangles. We also give explicit constructions of such triangles. Section

3.2 is mainly expository. It recalls the results from [13] that the space MT of all (unoriented)

spherical triangles has a structure of a three-dimensional real-analytic manifold. From this

we deduce that the space of balanced triangles of a fixed non-even area is a smooth bordered

surface. In Section 3.3 we describe a natural cell decomposition of the space MT bal(ϑ) of all

balanced triangles of fixed area π(ϑ− 1) with ϑ /∈ 2Z + 1.
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3.1 The shape of spherical triangles

We start this section by recalling the classifications [10] of spherical triangles. In fact, such

triangles are in one-to-one correspondence with spheres with a spherical metric with three

conical points, provided we exclude spheres and triangles with all integral angles. Indeed, for

each S2 with a spherical metric and three conical points, that are not all integral, there is a

unique isometric anti-conformal involution τ , such that S2/τ is a spherical triangle. Conversely,

for each spherical triangle ∆ we can take the sphere S(∆) glued from two copies of it.

It will be useful to introduce the following notation.

Notation. We denote by Z3
e the subset of Z3 consisting of triples (n1, n2, n3) with n1 +n2 +n3

even. By d1 we denote the `1 distance in R3 defined by d1(v,w) =
∑

i |vi − wi|. If a spherical

triangle has angles π · (ϑ1, ϑ2, ϑ3), then we call (ϑ1, ϑ2, ϑ3) ∈ R3 its associated angle vector.

Figure 7: Angle vectors of spherical triangles

We collect the results into three subsections, depending on the number of integral angles,

and we remind that there cannot be a triangle with exactly two integral angles.

3.1.1 Triangle with no integral angle

The first result we want to recall from [10] is the following.

Theorem 3.1 (Triangles with non-integral angles [10]). Suppose ϑ1, ϑ2, ϑ3 are positive and

none of them is integer. A spherical triangle with angles π · (ϑ1, ϑ2, ϑ3) exists if and only if

d1((ϑ1, ϑ2, ϑ3),Z3
e) > 1. (3)

Moreover such a triangle is unique when it exists.

The unique triangle with three non-integral angles π·(ϑ1, ϑ2, ϑ3) will be denoted by ∆(ϑ1, ϑ2, ϑ3).
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Remark 3.2. Let us decipher Inequality (3). Note first, that the subset d1((ϑ1, ϑ2, ϑ3),Z3
e) ≤

1 ⊂ R3 is a union of octahedra of diameter 2 centred at points of Z3
e. The complement to this set

is a disjoint union of open tetrahedra. Each such tetrahedron is contained in a unit cube with

integer vertices. This collection of tetrahedra is invariant under translations of R3 by elements

of Z3
e. Theorem 3.1 states that if a point (ϑ1, ϑ2, ϑ3) ∈ R3

>0 lies in one of such tetrahedra, the

corresponding spherical triangle exists and it is unique. Figure 7 depicts the union of six such

tetrahedra in the octant R3
>0.

An explicit construction of balanced spherical triangles can be found in [23, Section 3.1.2].

In fact, it was already used by Klein [18].

3.1.2 Triangles with one integral angle

The second result we wish to recall from [10] is the following.

Theorem 3.3 (Triangles with one integral angle [10]). If ϑ1 is an integer and ϑ2, ϑ3 are not

integers, then a spherical triangle with angles π · (ϑ1, ϑ2, ϑ3) exists if and only if at least one of

the following conditions is satisfied.

(a) |ϑ2 − ϑ3| is an integer n of opposite parity from ϑ1 and n = |ϑ2 − ϑ3| ≤ ϑ1 − 1.

(b) ϑ2 + ϑ3 is an integer n of opposite parity from ϑ1 and n = ϑ2 + ϑ3 ≤ ϑ1 − 1.

Moreover, when ϑi satisfy (a) or (b), there is a one-parameter family of triangles with angles

π · (ϑ1, ϑ2, ϑ3) and this family is parametrised by the length |x1x2| (or |x1x3|).

It is obvious that triangles satisfying the hypotheses of Theorem 3.3 (b) are never balanced.

Remark 3.4. It is easy to see that in the case when a triple (ϑ1, ϑ2, ϑ3) of positive numbers

satisfies the triangle inequality and the integrality constraints of Theorem 3.3 (a), there are

integers n1, n2, n3 ≥ 0 and a number θ ∈ (0, 1) such that ϑ1 = n2 + n3 + 1, ϑ2 = n1 + n3 + θ,

ϑ3 = n1 + n2 + θ.

Finally, we present a full description of balanced triangles with exactly one integral angle.

Proposition 3.5 (Balanced triangles with one integral angle). Let ∆ be a balanced spherical

triangle with vertices x1, x2, x3 and angles π · (ϑ1, ϑ2, ϑ3), where ϑ1 is an integer while ϑ2, ϑ3

are not integers. Let n1, n2, n3, θ be as in Remark 3.4. Then the following holds.

(i) |x2x3| = π.

(ii) There exists a unique pair of geodesic segments γ12, γ13 ⊂ ∆ with |γ12|+ |γ13| = π, that cut

∆ into the following three domains. The first is a digon with angles πn3 bounded by the

sides x1x2 and γ13. The second is a digon with angles πn2 bounded by the sides x1x3 and

γ13. The third is a triangle with sides γ12, γ13 and x2x3, and angles π(θ + n1, θ + n1, 1)

opposite to the sides.

(iii) All balanced triangles with angles π(ϑ1, ϑ2, ϑ3) are parametrised by the interval (0, π) where

one can choose as a parameter either |x1x2| or 2π − |x1x2|, depending on whether n3 is

even or odd.
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Proof. (i) Since ∆ is balanced, by Corollary 2.14 we have |x1x2|, |x2x3|, |x3x1| < 2π. Consider

the developing map ι : ∆ → S2. Since ϑ1 is integer, the images ι(x1x2), ι(x1x3) belong to one

great circle C in S2. At the same time, since the angle ϑ2 is non-integer, the image ι(x2x3) does

not belong to C. This means that ι(x2) and ι(x3) are opposite points on S2 and so |x2x3| = π.

(ii) Since |x2x3| = π by part (i), there exists a maximal digon embedded in ∆, with one

edge equal to x2x3. The other edge of such digon must pass through x1 by maximality, and so

it is the concatenation of two geodesics γ12 from x1 to x2 and γ13 from x1 to x3, that form an

angle π at x1. It is easy to see that these are the geodesics we are looking for. The uniqueness

of γ12, γ13 follows, because n1 and θ are uniquely determined.

(iii) follows from part (ii).

The next lemma is a partial converse to Proposition 3.5 (i).

Lemma 3.6 (Balanced triangles with one edge of length π). Let ∆ be a balanced spherical

triangle with vertices x1, x2, x3 and angles π(ϑ1, ϑ2, ϑ3). Suppose that |x2x3| = π. Then ϑ1 is

integer.

Proof. Consider the developing map ι : ∆ → S2. Since |xixj | < 2π by Corollary 2.14, we see

that ι(xi) 6= ι(xj) for i 6= j. In order to show that ϑ1 is integer it is enough to prove that both

images ι(x1x2) and ι(x1x3) lie on the same great circle. But this is clear, since the points ι(x2)

and ι(x3) are opposite on S2, while ι(x1) is different from both points.

Last lemma concerns semi-balanced triangles.

Lemma 3.7 (Semibalanced triangles with one integral angle). Suppose ∆ is a semi-balanced

triangle with angles π(ϑ1, ϑ2, ϑ3).

(i) If ϑi is an integer, then ϑ1 + ϑ2 + ϑ3 is an even integer 2m and ϑj , ϑk are half-integers.

(ii) If ϑ1 + ϑ2 + ϑ3 = 2m, then one ϑi is integer and the other two ϑj , ϑk are half integer.

Proof. Without loss of generality, we can assume that ϑ1 = ϑ2 + ϑ3. So certainly ϑ1 + ϑ2 + ϑ3

cannot be odd integral. It follows from [10, Theorem 2] that ϑ1, ϑ2, ϑ3 cannot be three integers.

(i) Note that ϑ2 cannot be an integer, because the relation ϑ1 − ϑ3 = ϑ2 would violate

Theorem 3.3 (a). Similarly, ϑ3 cannot be an integer. Hence, ϑ1 is an integer and so Theorem

3.3 (a) implies that ϑ2, ϑ3 are half-integers.

(ii) Our hypotheses imply that ϑ1 = m is an integer. By (i) we obtain that ϑ2, ϑ3 are

half-integers.

3.1.3 Triangles with three integral angles

We begin by giving a description of all triangles with integral angles.

Proposition 3.8 (Triangles with three integral angles). For any spherical triangle ∆ with

integral angles π · (m1,m2,m3) the following holds.
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(i) There exists a unique triple (n1, n2, n3) of non-negative integers such that m1 = n2+n3+1,

m2 = n3 + n1 + 1, m3 = n1 + n2 + 1. Moreover, there exist a unique triple of geodesic

segments γ12, γ23, γ13 ⊂ ∆ with |γ12| + |γ23| + |γ13| = 2π, that join points xi and cut ∆

into the following four domains:

– the central disk ∆0 isometric to a half-sphere and bounded by segments γ12, γ23, γ13;

– digons B1, B2, B3 where each Bi is bounded by segments γjk and xjxk and has angles

πni.

(ii) The space of triangles with angles π · (n1, n2, n3) can be identified with the set of triples of

positive numbers l12, l13, l23 satisfying l12 + l23 + l13 = 2π (where lij are interpreted as the

lengths of the sides of ∆0).

(iii) All sides of ∆ are shorter than 2π. Moreover, there is at most one side of length π.

Proof. (i) Consider the developing map: ι : ∆ → S2. Since all the angles of ∆ are integral,

all its sides are sent to one great circle on S2. The full preimages of this circle cuts ∆ into a

collection of hemispheres. It is easy to see that only one of these hemisphere contains all three

conical points, this is the disk ∆0 in ∆. The conical points cut the boundary of the disk into

three geodesic segments γ12, γ23, γ13. The complement to ∆0 in ∆ is the union of the three

digons B1, B2, B3.

(ii) It is clear from (i) that ∆ is uniquely defined by the three lengths lij = |γij | and

n1, n2, n3. Conversely, for each positive triple lij with l12 + l23 + l13 = 2π, and each integer

triple n1, n2, n3, one constructs a unique spherical triangle.

(iii) Since |γ12|+|γ23|+|γ31| = 2π, then all γij are shorter than 2π. If nk = 0, then xixj = γij .

If nk > 0, then xixj bounds a digon Bk with angles πnk. In both cases, xixj has length |γij |
(if nk is even) or 2π − |γij | (if nk is odd). Thus, |xixj | < 2π. Moreover, suppose that one of

the sides xixj , say x2x3, has length π. It follows that |γ23| = π and so |γ12|, |γ13| < π. As a

consequence, x1x2 and x1x3 have length different from π.

Remark 3.9 (Existence of balanced triangles with integral angles). If (m1,m2,m3) is a triple of

positive integers that satisfies the triangle inequality, then there exist n1, n2, n3 ≥ 0 integers such

that mi = 1 + nj + nk for {i, j, k} = {1, 2, 3}. Then the construction described in Proposition

3.8 (i) shows that there exists a balanced spherical triangle with angles π(m1,m2,m3).

We thus obtain a characterisation of such triangles (see also [10] and [13]).

Corollary 3.10 (Balanced triangles of area 2mπ). Let ∆ be a triangle.

(i) If ∆ has integral angles π · (m1,m2,m3), then ∆ is strictly balanced and it has area 2mπ

with m = 1
2(m1 +m2 +m3 − 1) ∈ Z.

(ii) If ∆ has area 2mπ for some integer m > 0 and it is balanced, then ∆ has integral angles

π · (m1,m2,m3), with m1 +m2 +m3 = 2m+ 1.

Proof. (i) By Proposition 3.8, the central disk ∆0 has angles π(1, 1, 1) and so it is strictly

balanced. Since ∆ is obtained from ∆0 by gluing digons along its edges, ∆ is strictly balanced.

The second claim is a consequence of [10, Theorem 2].
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(ii) Suppose that ∆ has angles π(ϑ1, ϑ2, ϑ3). Since Area(∆) = π(ϑ1 + ϑ2 + ϑ3 − 1) we see

that ϑ1 +ϑ2 +ϑ3 = 2m+ 1. It follows easily that d1((ϑ1, ϑ2, ϑ3),Z3
e) = 1. Hence, from Theorem

3.1 we conclude that at least one of the ϑi, say ϑ1, is integer.

Assume by contradiction that ϑ2 and ϑ3 are not integer, and so we are in the setting of

Theorem 3.3. The possibility (b) can’t hold because ∆ is balanced. Assume that possibility (a)

holds, in which case ϑ2−ϑ3 is an integer, and ϑ1 +ϑ2−ϑ3 is odd. But then, since ϑ1 +ϑ2 +ϑ3

is also odd, we see that ϑ3 is integer. This is a contradiction.

We conclude that all ϑi’s are integer.

3.1.4 Final considerations

The last statement of the section can be derived in many ways. Here we obtain it as a conse-

quence of Theorem 3.1, Theorem 3.3 and Proposition 3.8.

Corollary 3.11 (Triangles are determined the side lengths and angles). Let ∆ be a spherical

triangle with angles π · (ϑ1, ϑ2, ϑ3), and let li be the length of the side opposite to the vertex xi.

Then ∆ is uniquely determined by ϑi’s and li’s.

Proof. If none of ϑi is integer, then ∆ is uniquely determined by (ϑ1, ϑ2, ϑ3) by Theorem 3.1.

If ϑ1 is integer, while ϑ2 and ϑ3 are not integer, then the triangle ∆ is uniquely determined

by the angles ϑi and the length l3 by Theorem 3.3.

If ϑ1, ϑ2 ϑ3 are integer, then it follows from Proposition 3.8 that all triangles with angles ϑi

are uniquely determined by the lengths of their sides.

3.2 The space of spherical triangles and its coordinates

Let us denote by MT be space of all (unoriented) spherical triangles with vertices labelled

by x1, x2, x3, up to isometries that preserve the labelling. This space has a natural topology

induced by the Lipschitz distance (see Section 6). We will denote by ϑ1, ϑ2, ϑ3, l1, l2, l3 the

functions on MT , defined by requiring that πϑi(∆) is the angle of the spherical triangle ∆ at

xi and li(∆) is the length of the side of ∆ opposite to xi.

By Corollary 3.11 the map Ψ : MT → R6, that associates to each triangle its angles and

side lengths, is one-to-one onto its image. Moreover, we have the following result.

Theorem 3.12. (Space of spherical triangles [13, Theorem 1.2]) Let MT be the space of

spherical triangles. The image Ψ(MT ) ⊂ R6 is a smooth, connected, orientable real analytic

3-dimensional submanifold of R6.

This theorem says that the space MT has a structure of a smooth, connected, analytic

manifold and moreover at each point ∆ ∈ MT one can choose three functions among ϑi and

li as local analytic coordinates. It also follows from Theorem 3.12 that formulas of spherical

trigonometry, that are usually stated for convex spherical triangles, hold for all spherical trian-

gles. In particular, for any permutation (i, j, k) of (1, 2, 3) and any ∆ ∈MT the cosine formula
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for lengths holds8:

cos li sin(πϑj) sin(πϑk) = cos(πϑi) + cos(πϑj) cos(πϑk). (4)

Lemma 3.13 (Some coordinates on the spaceMT ). Consider the functions ϑ1, ϑ2, ϑ3 onMT .

(i) The functions ϑ1, ϑ2, ϑ3 form global analytic coordinates on the (open dense) subset ofMT
consisting of triangles with non-integral angles.

(ii) Suppose ∆ ∈MT is short-sided and the angle sum ϑ1(∆) + ϑ2(∆) + ϑ3(∆) is not an odd

integer. Then the function ϑ1 + ϑ2 + ϑ3 has non-zero differential at ∆.

Proof. (i) Consider the projection map from Ψ(MT ) to the angle space R3. According to

Theorem 3.1 this map is one-to-one over the subset of (ϑ1, ϑ2, ϑ3) in R3
>0, that satisfy Inequality

(3). We need to show that this projection is in fact a diffeomorphism over this set. However,

using the cosine formula (4) and the fact that none of ϑi is integer, we see that the lengths li

depend analytically on the ϑi’s.

(ii) As mentioned just before Section 3.1.1, there cannot be a spherical triangle with exactly

two integral angles. Moreover, Proposition 3.8(i) implies that ∆ cannot have three integral

angles, if ϑ1(∆) + ϑ2(∆) + ϑ3(∆) is not an odd integer. Thus ∆ can have at most one integral

angle.

In case all ϑi are non-integer, the statement follows immediately from (i). Suppose finally

that exactly one of ϑi, say ϑ1, is integer. Then, since ∆ is short-sided, using exactly the same

reasoning as in the proof of Proposition 3.5 (i), we deduce that li = π. Now, for any θ > 0

we can glue to the side x2x3 of ∆ the digon with two sides of length π and the angles πθ.

The family of triangles thus constructed, that depends on θ, determines a straight segment in

Ψ(MT ) starting from Ψ(∆) and the linear function ϑ1 + ϑ2 + ϑ3 restricted to this segment has

non-zero derivative.

Definition 3.14 (Spaces of triangles with assigned area). For any ϑ > 1 we denote byMT (ϑ) ⊂
MT the surface consisting of triangles with ϑ1 + ϑ2 + ϑ3 = ϑ. We denote by MT bal(ϑ) and

MT sh(ϑ) the subsets of balanced and short-sided triangles correspondingly.

The following statement is a corollary of Theorem 3.12 and Lemma 3.13.

Corollary 3.15 (Space of balanced triangles with assigned area). For any ϑ > 1 the set

MT bal(ϑ) is a non-singular, real analytic, orientable bordered submanifold of the manifold MT
of all spherical triangles. The boundary of MT bal(ϑ) consists of semi-balanced triangles.

Proof. Suppose first ϑ1 + ϑ2 + ϑ3 = 2m + 1. Balanced spherical triangles of area 2mπ are

classified in Lemma 3.10 and Proposition 3.8. They have integral angles and each connected

component forms an open Euclidean triangle in R6. Clearly such a subset of MT ⊂ R6 is a

smooth submanifold.

8Indeed, an analytic function vanishing on an open subset of an irreducible analytic variety vanishes identically.
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Assume now that ϑ = ϑ1 + ϑ2 + ϑ3 is not an odd integer. Clearly, MT sh is an open

subset of MT , and so we deduce from Lemma 3.13 (ii) that MT sh(ϑ) is an open smooth 2-

dimensional submanifold ofMT . The setMT bal(ϑ) is contained inMT sh(ϑ) and its boundary

is composed of semi-balanced triangles. We need to show that such triangles form a smooth

curve in MT sh(ϑ).

Let ∆ ∈ MT sh(ϑ) be a semi-balanced triangle, say ϑ1 = ϑ2 + ϑ3. If ϑ1, ϑ2, ϑ3 are not

integer, from Lemma 3.13 (i) it follows immediately that the curve ϑ1 − ϑ2 − ϑ3 = 0 is smooth

in a neighbourhood of ∆. Suppose that one of ϑi is integer. Then we are in the setting of

Lemma 3.7. In particular by Lemma 3.7 (i) we have ϑ1 + ϑ2 + ϑ3 = 2m. But then, applying

Lemma 3.7 (ii) we see that all semi-balanced triangles inMT bal(2m) have one integral and two

half-integral angles. Such triangles are governed by Proposition 3.5 and their image under the

map Ψ forms a collection of straight segments in R6. It follows that semi-balanced triangles

form a smooth curve in MT sh(2m).

Finally, let’s show that MT bal(ϑ) is orientable. This is clear if ϑ is an odd integer, because

a disjoint union of open triangles is orientable. In case ϑ is not an odd integer, it suffices to

show thatMT bal(ϑ) can be co-oriented, sinceMT is orientable. A co-orientation can indeed be

chosen since the function ϑ1 +ϑ2 +ϑ3 = ϑ has non zero differential along the surfaceMT bal(ϑ)

by Lemma 3.13 (ii).

3.3 Balanced spherical triangles of fixed area

The goal of this section is to describe the topology of the moduli space MT bal(ϑ) of balanced

triangles with marked vertices of fixed area π(ϑ − 1), where ϑ > 1. To better visualize the

structure of such space, we introduce the following object.

Definition 3.16 (Angle carpet). Take ϑ > 1 such that ϑ /∈ 2Z + 1. The angle carpet, denoted

Crp(ϑ) is the subset of the plane Π(ϑ) := {(ϑ1, ϑ2, ϑ3) ∈ R3
>0 |ϑ1 + ϑ2 + ϑ3 = ϑ} consisting of

points such that there exists a spherical triangle with angles π(ϑ1, ϑ2, ϑ3). Points in Crp(ϑ) with

one integral coordinate are called nodes. The balanced angle carpet is the subset Crpbal(ϑ) :=

Crp(ϑ)∩Bal(ϑ), where Bal(ϑ) = {(ϑ1, ϑ2, ϑ3) |ϑi ≤ ϑj + ϑk}. A node in Crpbal(ϑ) is internal if

it does not lie on ∂Bal(ϑ).

Now we separately treat the cases ϑ not odd and ϑ odd.

3.3.1 Case ϑ not odd

Throughout the section, assume ϑ /∈ 2Z + 1. We will denote by MT Z
bal(ϑ) its subset consisting

of triangles with at least one integral angle. By Proposition 3.5 this subset is a disjoint union of

smooth open intervals inMT bal(ϑ). We will see that it cutsMT bal(ϑ) in a union of topological

disks. This decomposition is very well reflected in the structure of the associated balanced

carpet, as we will see below.
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Figure 8: The angle carpet Crp(7
2
), composed of 16 open triangles and 12 nodes. The

shaded area represents points in Bal(ϑ).

The carpet Crp(ϑ) is composed of a disjoint union of open triangles with a subset of their

vertices (the nodes). In order to better visualize such carpets, we will often identify Crp(ϑ) with

its projection to the horizontal (ϑ1, ϑ2)-plane. Figure 8 shows how the projection of Crp(3.5)

looks like: it is a union of 16 disjoint open triangles (singled out by Inequality (3) of Theorem

3.1) and a subset of 12 of nodes (governed by condition (a) of Theorem 3.3) marked as black

dots. Figure 9 depicts the projection of balanced angle carpets for five different values of ϑ.
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Figure 9: Balanced carpets for ϑ = 1.5, 2, 3.5, 6, 8.

The following lemma is a consequence of Theorems 3.1 and 3.3.

Lemma 3.17 (Description of the angle carpets). Take ϑ ∈ (1,∞)\{2Z+1} and set m = bϑ+1
2 c.

(i) The carpet Crp(ϑ) is the union of 4m2 open triangles with 3m2 nodes (ϑ1, ϑ2, ϑ3), such

that the unique integer coordinate ϑi of a node satisfies the inequality ϑi ≥ |ϑj−ϑk|+2l+1

for some integer l ≤ 0.

(ii) All points (ϑ1, ϑ2, ϑ3) ∈ Bal(ϑ) with one positive integral coordinate are nodes in Crpbal(ϑ).

Hence, the balanced carpet Crpbal(ϑ) is a connected set.

(iii) The balanced carpet Crpbal(ϑ) intersects E open triangles and it contains N internal nodes,

where

E =

m2 if ϑ ≤ 2m

m2 + 3m if ϑ > 2m
N =

3m(m− 1)/2 if ϑ ≤ 2m

3m(m+ 1)/2 if ϑ > 2m.

Hence E −N = −m(m− 3)/2.

(iv) There exists a point in Crpbal(ϑ) with non-integral coordinates at which ϑ2 = ϑ3.
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Proof. (i) Let us split the carpet into two subsets. The first subset consists of points such that

none of coordinates ϑi is integer, and the second subset is where one of coordinates ϑi is integer.

Is is clear that the first subset is the union of open triangles given by intersecting the plane

ϑ1 + ϑ2 + ϑ3 = ϑ with the open tetrahedra that are given by Inequality (3) of Theorem 3.1.

Since such plane does not pass through any vertex of the tetrahedra for ϑ non-odd, it follows

that the number of triangle only depends on m and so we can compute it for ϑ = 2m. Look at

the projection of Crp(2m) inside the (ϑ1, ϑ2)-plane and enumerate the open triangles as follows:

to points of type (0, l + 1/2) with l ∈ {0, 1, . . . , 2m − 1} we can associate a unique triangle, to

points of type (n, l+ 1/2) with n ∈ {1, . . . , 2m−1} and l ∈ {0, . . . , 2m−n−1} we can associate

two triangles. The number of such triangles is thus 4m2.

The second subset is governed by Theorem 3.3. Since ϑ1 +ϑ2 +ϑ3 = ϑ is not an odd integer,

only the nodes that satisfy condition (a) of Theorem 3.3 lie in Crp(ϑ). Again it’s enough to count

the nodes for ϑ = 2m. Suppose first ϑ1 integer. We must have |2ϑ2 + ϑ1 − 2m| = |ϑ2 − ϑ3| =
ϑ1 − 1− 2l for some integer l. If ϑ1 ∈ {1, 2, . . . ,m}, then ϑ2 ∈ 1

2 + {m− ϑ1, . . . ,m− 1} and so

we have m(m + 1)/2 nodes. If ϑ1 ∈ {m + 1, . . . , 2m − 1}, then ϑ2 ∈ 1
2 + {0, . . . , 2m − 1 − ϑ1}

and so we have m(m− 1)/2 nodes. Thus, we have m2 nodes with integral ϑ1, and we conclude

that we have 3m2 nodes in total.

(ii) Again, it is enough to consider the case ϑ = 2m. In the balanced carpet ϑi ≤ m for all

i and so the first claim follows from the above enumeration of the nodes. Hence, Crpbal(ϑ) is

connected.

(iii) Let us first consider N . For ϑ = 2m the enumeration in part (i) shows that N =

3m(m − 1)/2. If ϑ < 2m, such N does not change. If ϑ > 2m, then N = 3m(m − 1)/2 + 3m,

such extra 3m is exactly the number of nodes sitting in ∂Bal(2m).

As for E, the enumeration in (i) for ϑ = 2m shows that 4E = 4m2 and so E = m2. For

ϑ < 2m, the value of E does not change. For ϑ > 2m, there 3m extra triangles intersected by

Bal(ϑ), which is exactly the number of nodes sitting in ∂Bal(2m).

(iv) The point ϑ1 = (c + 3)/4 and ϑ2 = ϑ3 = m − 3(1 − c)/8 belongs to the interior of

Crpbal(ϑ) and it is not a node.

In order to understand the topology of MT bal(ϑ) we consider the natural projection map

Θ :MT bal(ϑ)→ Crpbal(ϑ) that sends ∆ to (ϑ1(∆), ϑ2(∆), ϑ3(∆)).

Analysis of the map Θ. By Proposition 3.17 the balanced carpet Crpbal(ϑ) consists of E

polygons {Pl}, bounded by some semi-balanced edges that sit in ∂Bal(ϑ) and some nodes. Note

that we are considering Pl as closed subsets of Crpbal(ϑ): in fact, Pl is not a closed subset of

the plane Π(ϑ) as it misses the edges sitting on the lines ϑi = a + (c + 1)/2 with i ∈ {1, 2, 3}
and a ∈ {0, 1, . . . ,m− 1}: such edges will be called ideal edges. In Figure 10 the polygon Pl on

the right has two nodes, one semi-balanced edge and three ideal edges. (Note that a node can

be semi-balanced too.)
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Figure 10: The map Θ. Unmarked edges are ideal edges.

For each polygon Pl, the real blow-up P̂l of Pl at its nodes is obtained from Pl by replacing

each node by an open interval (nodal edge): the natural projection P̂l → Pl contracts each nodal

edge to the corresponding node. (Note that a nodal edge can be also semi-balanced.) For every

l we can fix a realization of P̂l inside R2 as the union of an open convex polygon with some of its

open edges (nodal edges and semi-balanced edges). Again, such P̂l is not a closed subset of R2,

as it misses the edges corresponding to the ideal edges of Pl: such missing edges will be referred

to as the ideal edges of P̂l. In Figure 10 the polygon P̂l has two nodal edges, one semi-balanced

edge and three ideal edges.

We recall that MT bal(ϑ) is a surface by Corollary 3.15 and its boundary consists of semi-

balanced triangles, and that the map Θ contracts each open interval inMT Z
bal(ϑ) to a node by

Proposition 3.5 and it is a homeomorphism elsewhere by Lemma 3.13 (i).

It is easy then to see that Θ−1(Pl \ {nodes}) is homeomorphic to P̂l \ {nodes}. Suppose now

that two distinct polygons Pl and Ph intersect in a node ϑ̄. The preimage Θ−1(ϑ̄) is an open

segment and Θ−1(Pl ∪ Ph) is homeomorphic to the space obtained from P̂l t P̂h by identifying

the nodal edges that correspond to ϑ̄.

In order to understand such identification, choose an orientation of MT bal(ϑ) in a neigh-

bourhood of Θ−1(ϑ̄) and an orientation of the plane Π(ϑ), so that Pl and P̂l inherit an ori-

entation from Π(ϑ), and each nodal edge of P̂l is induced an orientation from P̂l. Together

with Corollary 3.15, the last paragraph of the proof of [13, Proposition 4.7] shows that Θ is

orientation-preserving on one of the two polygons Pl or Ph and orientation-reversing on the

other. Hence, the two nodal edges corresponding to ϑ̄ are identified through a map that pre-

serves their orientation; we can also prescribe that such identification is a homothety in the

chosen realizations of P̂l and P̂h.

Part of the above analysis can be rephrased as follows.

Lemma 3.18. The space MT bal(ϑ) is homeomorphic to the real blow-up of Crpbal(ϑ) at its

nodes.
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A further step in describing the topology of MT bal(ϑ) is to study its ends.

Construction 3.19 (The strips Si,a(ϑ)). As remarked above, every ideal edge of Pl has equation

ϑi = a+ (c+ 1)/2 for some a ∈ {0, . . . ,m− 1} and i ∈ {1, 2, 3}. Viewing P̂l inside R2, an open

thickening of the corresponding ideal edge intersects P̂l in a region S li,a(ϑ) homeomorphic to

[0, 1] × R, where {0, 1} × R correspond to portions of nodal or semi-balanced segments. In

every P̂l such thickenings can be chosen so that the corresponding regions are disjoint and their

ends {0} × R and {1} × R cover 1/4 of the corresponding nodal or semi-balanced segment.

The complement inside P̂l of such strips is clearly compact. (One example of region S li,a(ϑ) is

illustrated in Figure 10 on the left: it is the darker thickening of the horizontal ideal edge of

P̂l.)

It follows that, for fixed i ∈ {1, 2, 3} and a ∈ {0, 1, . . . ,m− 1}, the regions {S li,a(ϑ)} glue to

give a strip Si,a(ϑ) homeomorphic to [0, 1]×R, with {0, 1}×R corresponding to semi-balanced

triangles. Thus there are 3m disjoint such strips, each one associated to a pair (i, a).

We are now ready to completely determine the topology of the space MT bal(ϑ).

Proposition 3.20 (Topology of the space of balanced triangles with assigned area). Suppose

that ϑ = 2m+ c where c ∈ (−1, 1).

(i) MT bal(ϑ) is a connected, orientable, smooth bordered surface of finite type, whose bound-

ary is the set of semi-balanced triangles.

(ii) The boundary of MT bal(ϑ) is a union of 3m disjoint open intervals.

(iii) The surface MT bal(ϑ) has 3m ends, namely the strips Si,a(ϑ). Each strip corresponds in

Crpbal(ϑ) to a line ϑi = a + (c + 1)/2 for some a ∈ {0, 1, . . . ,m − 1} and i ∈ {1, 2, 3}.
Moreover, each Si,a(ϑ) is homeomorphic to [0, 1]× R and {0, 1} × R corresponds to semi-

balanced triangles.

(iv) The Euler characteristic of MT bal(ϑ) is χ(MT bal(ϑ)) = −m(m− 3)/2.

Proof. (i) Thanks to Corollary 3.15 we only need to prove that MT bal(ϑ) is connected and of

finite type. Since the balanced carpet Crpbal(ϑ) is connected by Lemma 3.17 (ii) and it consists

of finitely many nodes and polygons, both claims follow from Lemma 3.18.

(ii) It will be enough to show that the set of semi-balanced triangles with angles ϑ1, ϑ2, ϑ3,

satisfying ϑ1 = ϑ2 + ϑ3 and ϑ1 + ϑ2 + ϑ3 = ϑ, is a union of m open intervals. In case c = 0

these m intervals correspond to m types of triangles with angles π(m, 1
2 + l, 1

2 +m− l−1) where

l ∈ [0,m− 1] is an integer number. In case c 6= 0 these intervals correspond to the intersection

of the line ϑ1 = ϑ2 + ϑ3 with m open triangles of the carpet Crp(ϑ).

(iii) follows from Construction 3.19.

(iv) The internal part of MT bal(ϑ) is an orientable surface without boundary and so the

Euler characteristic of its cohomology with compact support coincides with its Euler charac-

teristic by Poincaré duality. Decompose the interior of MT bal(ϑ) into a finite union of open

1-cells MT Z
bal(ϑ) (corresponding to internal nodes in the balanced carpet) and open 2-cells

(corresponding to the intersection of Bal(ϑ) with open triangles in the carpet). By Lemma
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3.17 (iii) the space MT bal(ϑ) is a union of E open 2-cells and N open 1-cells. Thus, its Euler

characteristic is E −N = −m(m− 3)/2.

Let us now consider balanced triangles (with labelled vertices, as usual) endowed with an

orientation. We stress that the orientation and the labelling of the vertices are unrelated. Let

MT +
bal(ϑ) be the set of oriented balanced triangles of area π(ϑ − 1) in which the vertices are

labelled anti-clockwise, and let MT −bal(ϑ) be the analogous space in which the vertices are

labelled clockwise. Both sets can be given the topology induced by the identification with

MT bal(ϑ). The space of oriented balanced triangles is then MT +
bal(ϑ) tMT −bal(ϑ).

Definition 3.21 (Doubled space of balanced triangles). The doubled space of balanced triangles

of area π(ϑ− 1) is the space MT ±bal(ϑ) obtained from MT +
bal(ϑ) tMT −bal(ϑ) by identifying an

oriented semi-balanced triangle ∆ to the triangle obtained from ∆ by reversing its orientation.

It follows that MT ±bal(ϑ) is homeomorphic to the double of MT bal(ϑ).

Proposition 3.22 (The doubled space of balanced triangles of assigned area). Let ϑ > 1 a

non-odd real number and let m = bϑ+1
2 c.

(i) MT ±bal(ϑ) is a connected, orientable surface of finite type, without boundary.

(ii) MT ±bal(ϑ) has Euler characteristic −m2, genus (m− 1)(m− 2)/2 and 3m punctures.

(iii) The action of S3 by relabelling the vertices of the triangles consists of orientation-preserving

homeomorphisms of MT ±bal(ϑ).

(iv) The action of S3 on the set of punctures of MT ±bal(ϑ) has m orbits of length 3.

Proof. (i) is a consequence Proposition 3.20 (i), since MT ±bal(ϑ) is the double of MT bal(ϑ).

(ii) Since MT ±bal(ϑ) is an orientable surface without boundary, the Euler characteristic

agrees with the Euler characteristic with compact support. By Proposition 3.20 (ii) the surface

MT bal(ϑ) has boundary consisting of 3m open segments. Hence χ(MT ±bal(ϑ)) = 2χ(MT bal(ϑ))−
3m = −m(m− 3)− 3m = −m2.

By Proposition 3.20 (iii) each end of MT bal(ϑ) is associated to a strip Sia(ϑ) with a ∈
{0, 1, . . . ,m} and i ∈ {1, 2, 3}, and it is homeomorphic to [0, 1] × R, and so it doubles to

punctured disk S1 × R inside MT ±bal(ϑ), that will be denoted by E ia(ϑ). Hence, we obtain 3m

punctures. The genus of g(MT ±bal(ϑ)) = 1− 3m
2 −

1
2χ(MT ±bal(ϑ)) is then easily computed.

(iii) Choose an arbitrary orientation ofMT ±bal(ϑ). We want to show that every transposition

(i j) ∈ S3 acts on MT ±bal(ϑ) through an orientation-preserving homeomorphism. Consider for

instance the transposition (2 3), that sends a triangle in MT +
bal(ϑ) with nonintegral angles

(ϑ1, ϑ2, ϑ3) to the triangle in MT −bal(ϑ) with nonintegral angles (ϑ1, ϑ3, ϑ2). Since MT +
bal(ϑ)

and MT −bal(ϑ) have opposite orientations when viewed as subsets of MT ±bal(ϑ), it is enough to

show that (2 3) acts on MT bal(ϑ) by reversing its orientation.

By Lemma 3.17 (iv), there exists a point in Crpbal(ϑ) with non-integral coordinates (ϑ1, ϑ2, ϑ2),

and so a corresponding balanced triangle ∆ in MT ±bal(ϑ). It is clear that the transformation

(ϑ1, ϑ2, ϑ3) 7→ (ϑ1, ϑ3, ϑ2) of Crpbal(ϑ) reverses the orientation at (ϑ1, ϑ2, ϑ2). Hence, (2 3) acts

on MT bal(ϑ) by reversing its orientation.
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(iv) Each orbit of the S3-action on the ends E ia(ϑ) is of type {E1
a(ϑ), E2

a(ϑ), E3
a(ϑ)}. Since

a ∈ {0, 1, . . . ,m− 1}, there are m orbits of length 3.

3.3.2 Case ϑ odd

The case of ϑ = 2m+ 1 for some integer m ≥ 0 is much easier to handle.

Lemma 3.23 (Description of the balanced carpet). The balanced carpet Crpbal(2m+1) consists

of m(m+ 1)/2 internal nodes.

Proof. Triangles in MT bal(2m + 1) have area 2mπ by Gauss-Bonnet. By Lemma 3.10 and

Remark 3.9, the balanced carpet Crpbal(2m + 1) consists just of triples (ϑ1, ϑ2, ϑ3) ∈ Z3 such

that ϑ1 + ϑ2 + ϑ3 = 2m + 1 and 1 ≤ ϑi ≤ m for all i. It is easy to see that such points are

m(m+ 1)/2 internal nodes.

This easily lead to the description of the moduli space of balanced triangles.

Proposition 3.24 (Topology of the space of balanced triangles). The space MT bal(2m+ 1) is

diffeomorphic to the disjoint union of m(m+ 1)/2 copies of the open 2-simplex ∆̊2.

Proof. Fix (ϑ1, ϑ2, ϑ3) ∈ Crpbal(2m+ 1). By Proposition 3.8 (ii) and Proposition 3.8 the locus

of triangles ∆ inMT bal(2m+1) with ϑi(∆) = ϑi for i = 1, 2, 3 is real-analytically diffeomorphic

to the set of triples (l1, l2, l3) ∈ (0, 2π)3 such that l1 + l2 + l3 = 2π, which is clearly homothetic

to ∆̊2. The conclusion then follows from Lemma 3.23.

Let Crp±bal(2m+1) be the disjoint union of two copies of Crpbal(2m+1), namely its elements

are of type (ϑ, ε), where ϑ ∈ Crp±bal(2m + 1) and ε = ±1. We denote by MT ±bal(2m + 1) the

doubled space of spherical triangles of area 2mπ and by Θ± :MT ±bal(2m+ 1)→ Crp±bal(2m+ 1)

the map that sends an oriented triangle ∆ to (ϑ(∆), ε(∆)), where ε(∆) = 1 if the vertices of ∆

are numbered anti-clockwise, and ε(∆) = −1 otherwise.

Proposition 3.25 (Topology of the doubled space of balanced triangles). The spaceMT ±bal(2m+

1) is diffeomorphic to Crp±bal(2m+ 1)× ∆̊2, namely to the disjoint union of m(m+ 1) open 2-

simplices. The permutation group S3 that relabels the vertices of a triangle in MT ±bal(2m + 1)

acts on an element (ϑ, ε,y) of Crp±bal(2m+ 1)× ∆̊2 permuting the coordinates of ϑ and y, and

through its sign on ε.

Proof. The first claim relies on Proposition 3.24. The remaining ones are straightforward.

4 Moduli spaces of spherical tori

The goal of this section is to describe the topology of the moduli space MS1,1(ϑ) and so to

prove Theorem A (case ϑ non-odd) and Theorems C-D (case ϑ odd).
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We recall that, by isomorphism between two spherical tori, we mean an orientation-preserving

isometry. We refer to Section 6 for the definition of Lipschitz distance and topology onMS1,1(ϑ)

and MS(2)
1,1(ϑ) needed below.

The object of our interest is the following.

Definition 4.1 (MS1,1(ϑ) as a topological space). The space MS1,1(ϑ) is the set of isomor-

phism classes of spherical tori with one conical point of angle 2πϑ, endowed with the Lipschitz

topology.

In order to prove Theorem A it will be convenient to introduce the notion of 2-marking.

Definition 4.2 (2-marking). A 2-marking of a spherical torus T with one conical point x is a

labelling of its nontrivial 2-torsion points or, equivalently, an isomorphism H1(T ;Z2) ∼= (Z2)2.

There is a bijective correspondendence between isomorphisms µ : (Z2)2 → H1(T ;Z2) and or-

derings of the three non-trivial elements ofH1(T ;Z2): it just sends µ to the triple (µ(e1), µ(e2), µ(e1+

e2)). In fact, the action of SL(2,Z2) on 2-markings corresponds to the S3-action that permutes

the orderings. If the torus T has a spherical metric with conical point x, the nontrivial confor-

mal involution σ fixes x and its three non-trivial 2-torsion points: the above ordering is then

equivalent to the labelling of such three points. In this case, an isomorphism of between two

2-marked spherical tori is an orientation-preserving isometry compatible with the 2-markings.

Definition 4.3 (MS(2)
1,1 as a topological space). The space MS(2)

1,1(ϑ) is the set isomorphisms

classes of 2-marked spherical tori with one conical point of angle 2πϑ, endowed with the Lipschitz

topology.

In Remark 6.28 we show that MS1,1(ϑ) and MS(2)
1,1(ϑ) can be endowed with the structure

of orbifolds in such a way that the map MS(2)
1,1(ϑ)→MS1,1(ϑ) that forgets the 2-marking is a

Galois cover with group S3 (which is unramified in the orbifold sense).

4.1 The case when ϑ is not an odd integer

Because of the relevance for the orbifold structure of the moduli spaces we are interested in, we

first classify all possible automorphisms of spherical tori with one conical point.

Proposition 4.4 (Automorphisms group of a spherical torus (ϑ non-odd)). Suppose that ϑ /∈
2Z + 1. For any spherical torus (T, x) of area 2π(ϑ − 1) the group of automorphisms GT is

isomorphic either to Z2, or to Z4, or to Z6.

(i) A torus with automorphism group Z6 exists if and only if d1(ϑ, 6Z) > 1.

(ii) A torus with automorphism group Z4 exists if and only if d1(ϑ, 4Z) > 1.

(iii) For each ϑ there can be at most one torus with automorphism Z4 and one torus with

automorphism Z6.

(iv) The subgroup of GT of automorphisms that fix the 2-torsion points of T is isomorphic to

Z2, generated by the conformal involution.
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In Figure 9 we have highlighted with Q or H respectively the triples Θ(∆) such that T (∆)

has automorphism group isomorphic to Z4 or Z6 respectively.

Proof of Proposition 4.4. Recall that by Proposition 2.17 each torus has an automorphism of

order 2, namely the conformal involution. Clearly such involution fixes the 2-torsion points of

the torus. This implies (iv) and it proves that |GT | is even.

To bound the automorphism group we note that the action of GT fixes x and preserves

the conformal structure on T . Hence, in case |GT | > 2 the torus T is biholomorphic either

to T4 = C/(Z ⊕ ζ4Z) or T6 = C/(Z ⊕ ζ6Z), where ζk = exp(2πi/k), and its automorphisms

group is isomorphic to Z4 (generated by the multiplication by ζ4) or to Z6 (generated by the

multiplication by ζ6) correspondingly.

Let us now prove the existence part of (i) and (ii).

(i) Suppose that d1(ϑ, 6Z) > 1. According to Theorem 3.1, this condition is equivalent

to existence of a spherical triangle ∆ with angles πϑ/3. Such a triangle has a rotational Z3-

symmetry. It follows that the torus T (∆) has an automorphism of order 6.

(ii) Suppose that d1(ϑ, 4Z) > 1. According to Theorem 3.1, this condition is equivalent to

existence of a spherical triangle ∆ with angles π(ϑ/2, ϑ/4, ϑ/4). This triangle has a reflection,

i.e. an anti-conformal isometry that exchanges two vertices of angles πϑ/4. Gluing two copies

of ∆ along the edge that faces the angle πϑ/2, we obtain a quadrilateral with four edges of the

same length and four angles πϑ/2. It is easy to see that such quadrilateral has a rotational

Z4-symmetry, and so that T (∆) has an order 4 automorphism.

Let now (T, x, ϑ) be any spherical torus with |GT | > 2 and let us show that it has to be one

of two tori constructed above. Consider two cases.

First, suppose that the Voronoi graph Γ(T ) is a trefoil. In this case by Proposition 2.21

and Theorem B there is a unique collection of three geodesic loops γ1, γ2, γ3 based at x that

cut T into two isometric strictly balanced triangles ∆ and ∆′. This collection is sent by GT to

itself, and so |GT | is divisible by three, hence |GT | = 6. It is easy to see then that the subgroup

Z3 ⊂ GT sends ∆ to itself and permutes its vertices. So ∆ has angles πϑ/3 and so we are in case

(i). Since ϑ/3 cannot be integer, this also proves the uniqueness of a torus with automorphism

group Z6.

Suppose now that the Voronoi graph Γ(T ) is an eight graph. Then again by Proposition

2.21 and Theorem B there is a canonical collection of four geodesic loops γ1, γ2, η1, η2. Since

GT sends the couple η1, η2 to itself, we see that geodesics η1 and η2 cut a neighbourhood of x

into four sectors of angles πϑ/2. The same holds for the couple of loops γ1 and γ2. Since by

Remark 2.22 each γi bisects two sectors formed by η1 and η2 we see that, taken together, the

geodesics γ1, γ2, η1, η2 cut a neighbourhood of x into four eight sectors of angles πϑ/4. Hence

γ1, γ2, η1 cut ∆ into two semi-balanced triangles with angles π(ϑ/2, ϑ/4, ϑ/4), and so we are in

case (ii). The uniqueness of a torus with automorphism group Z4 follows from the uniqueness

of an isosceles triangle with angles π(ϑ/2, ϑ/4, ϑ/4).

We recall in more detail the construction mentioned in the introduction.
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Construction 4.5. Consider the following maps of sets

MT ±bal(ϑ)

T (2)

++
MS(2)

1,1(ϑ)

∆(2)

kk

The map T (2) is defined by sending an oriented triangle ∆ to the torus T (∆), where we mark

by pi the midpoint of the side opposite to the vertex xi of ∆.

As for ∆(2), we proceed as follows. Let (T, x,p) be a torus with its order 2 points marked

by p1, p2, p3.

Suppose first that T does not have a rectangular involution. By Theorem B there is a unique

collection of three geodesics loops γi that cuts T into two congruent strictly balanced triangles

∆ and ∆′. We enumerate the geodesics so that each pi is the midpoint of γi. Next, we label the

vertices of ∆ by x1, x2, x3 so that xi is opposite to γi. Hence, we associate to T a unique strictly

balanced triangle with enumerated vertices. In case the vertices of ∆ go in anti-clockwise order,

we associate to ∆ the corresponding point in the interior of MT +
bal(ϑ), otherwise we associate

to ∆ a point in the interior of MT −bal(ϑ).

Suppose now that T has a rectangular involution. Then by Theorem B the torus T can be

cut into two isomorphic semi-balanced triangles in two different ways. At the same time the

rectangular involution sends one pair to the other by reversing the orientation and fixing the

labelling of the vertices. This means that the two points associated to T in the boundaries of

MT +
bal(ϑ) and MT −bal(ϑ) are identified in MT ±bal(ϑ).

At this point we have the tools to prove the following preliminary fact.

Lemma 4.6 (T (2) is bijective). The map T (2) :MT ±bal(ϑ)→MS(2)
1,1(ϑ) is a bijection and ∆(2)

is its inverse.

Proof. It is very easy to see that T (2) ◦∆(2) is the identity ofMS(2)
1,1(ϑ). Vice versa, ∆(2) ◦ T (2)

is the identify of MT ±bal(ϑ) by Theorem B.

Remark 4.7 (Orbifold Euler characteristic). We recall from the introduction that we are using

the definition of orbifold Euler characteritic given at page 29 of [7]. We are particularly interested

in two properties enjoyed by the orbifold Euler characteristic:

(a) if Y → Z is an orbifold cover of degree d, then χ(Y) = d · χ(Z);

(b) if Y is a connected, orientable, two-dimensional orbifold with underlying topological space

Y , then

χ(Y) =
1

ord(Y)
χ(Y )−

∑
y

(
1

ord(Y)
− 1

ord(y)

)
,

where ord(Y) is the orbifold order of a general point of Y and ord(y) is the orbifold order

of y ∈ Y , and the sum is ranging over points y ∈ Y that have orbifold order strictly greater

than ord(Y).
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Since we will only compute χ for two-dimensional, connected, orientable orbifolds, property

(b) could even be taken as a definition.

The main ingredient for the proof of Theorem A is to show that the map T (2) is a homeo-

morphism and so that, as a topological space,MS(2)
1,1(ϑ) is a surface. As a consequence, we can

endow MS(2)
1,1(ϑ) with an orbifold structure (as done in Remark 6.28) in such a way that every

point has orbifold order 2, which is coherent with Proposition 4.4(iv).

Theorem 4.8 (Moduli space of spherical tori with 2-marking). Let ϑ > 1 be a real number

such that ϑ /∈ 2Z + 1 and let m = bϑ+1
2 c. As a topological space, MS(2)

1,1(ϑ) has the following

properties.

(i) The map T :MT ±bal(ϑ)→MS(2)
1,1(ϑ) is a homeomorphism and soMS(2)

1,1(ϑ) is a connected,

orientable surface of finite type without boundary.

(ii) It has genus (m− 1)(m− 2)/2 and 3m punctures.

(iii) The group S3 that permuted the 2-torsion points of a torus acts onMS(2)
1,1(ϑ) by orientation-

preserving homeomorphisms.

(iv) The action of S3 on the set of punctures of MS(2)
1,1(ϑ) has m orbits of length 3.

As an orbifold, MS(2)
1,1(ϑ) is isomorphic to the quotient of its underlying topological space by the

trivial Z2-action and its orbifold Euler characteristic is −m2/2.

Proof. The map T (2) is bijective by Lemma 4.6 and in fact a homeomorphism by Theorem 6.5.

Hence, (i-iv) follow from Proposition 3.22 (i-iv). The orbifold structure was described just above

the statement of the theorem: the involution σ is the only nontrivial automorphism of a point

in MS(2)
1,1(ϑ) by Proposition 4.4 (iv), and it acts trivially on MT ±bal(ϑ). Hence, MS(2)

1,1(ϑ) is

isomorphic to the quotient ofMT ±bal(ϑ) by the trivial Z2-action. As a consequence, the orbifold

Euler characteristic satisfies χ(MS(2)
1,1(ϑ)) = χ(MT ±bal(ϑ))/2.

As above, we can endow MS1,1(ϑ) with an orbifold structure as in Remark 6.28, in such a

way that the orbifold order of a point in MS1,1(ϑ) agrees with the number of automorphisms

of the corresponding spherical torus.

Let us finally prove Theorem A.

Proof of Theorem A. By Remark 6.28, the map MS(2)
1,1(ϑ) → MS1,1(ϑ) that forgets the 2-

marking is an unramified S3-cover of orbifolds. Hence, MS1,1(ϑ) is a smooth, connected two-

dimensional orbifold of finite type by Theorem 4.8 (i), and orientability follows from Proposition

4.4.

(ii-iii-iv) Clearly χ(MS1,1(ϑ)) = χ(MS(2)
1,1(ϑ))/|S3| = −m2/12 by Theorem 4.8. Also, (iii-iv)

and remaining claim of (ii) are established in Proposition 4.4.

(i) The spaceMS1,1(ϑ) has m punctures by Theorem 4.8 (ii,iv). Moreover its (non-orbifold)

Euler characteristic of is 2(−m2/12 + ε), where ε ∈ {0, 1
4 ,

1
3 ,

7
12 = 1

4 + 1
3}. Indeed, a point of

order 4 in MS1,1(ϑ) contributes to ε with 1
4 = 1

2 −
1
4 and a point of order 6 contributes with

1
3 = 1

2 −
1
6 . Hence, the genus of MS1,1(ϑ) is 1− 1

2(m+ 2(−m2/12 + ε)) = bm2−6m+12
6 c.
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Let us finish this subsection with a simple corollary of Theorem 4.8. As a topological space,

we denote by MS(2)
1,1(ϑ) the unique smooth compactification of the surface MS(2)

1,1(ϑ) obtained

by filling in the 3m punctures. As above, we endow MS(2)
1,1(ϑ) with the orbifold strucure given

by taking the quotient of its underlying topological space by the trivial Z2-action.

Corollary 4.9 (A cell decomposition ofMS(2)
1,1(ϑ)). Suppose that ϑ = 2m+c, where c ∈ (−1, 1).

As a topological space, MS(2)
1,1(ϑ) has the following properties.

(i) It is a compact, connected, orientable surface of genus (m− 1)(m− 2)/2.

(ii) It has a natural structure of a CW complex, where

– its 0-cells are the 3m added points,

– its 1-cells are formed by tori T such that ∆(T ) is ether a semi-balanced triangle, or a

triangle with one integral angle,

– its 2-cells are the complement to the union of 0-cells and 1-cells.

Moreover, for c ≤ 0 the cell decomposition is a triangulation into 2m2 triangles.

Proof. Let us comment on the last claim, since the other claims are rather immediate after

Theorem 4.8. Recall, that in the proof of Proposition 3.20 (iv) for c ≤ 0 we constructed a

decomposition of MT bal(ϑ) in the union of 3m(m + 1)/2 one-cells and m2 two-cells. One can

check that each of theses m2 cells has exactly three 1-cells in its boundary. Hence, we get a

triangulation of the topological space MS(2)
1,1(ϑ).

Note however, that for c > 0 the total number of 2-cells is 2m2 + 6m and the additional 6m

cells are digons rather than triangles.

4.2 The case when ϑ is an odd integer

In this subsection we prove Theorems C-D. Our first step will be to prove Theorem E, from

which part (a) of Theorem C will be easily obtained.

Proof of Theorem E. According to Proposition 2.17, there is a unique curvature 1 metric on

T with angle 2π(2m + 1) in given projective equivalence class, which is invariant under the

conformal involution σ of T . Hence we can apply Proposition 2.21 to T endowed with such

σ-invariant metric. According to such proposition, there exist three geodesic loops based at the

conical point x that cut T into two isometric balanced triangles ∆ and ∆′. By Gauss-Bonnet

formula we have Area(∆) = 2πm and so we can apply Lemma 3.10. According to such lemma,

∆ is a balanced triangle with angles 2π · (m1,m2,m3) where m1 + m2 + m3 = 2m + 1. This

finishes the proof of the theorem.

Such a result already allows us to describe MS1,1(2m+ 1)σ as a topological space.

Proof of part (a) of Theorem C. As in the proof of Theorem E, we can associate to each torus

with a σ-invariant metric a unique oriented balanced spherical triangle with integral angles and

unmarked vertices. Clearly, an orientation on a triangle is equivalent to a numbering of its
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vertices up to cyclic permutations. Such correspondence determines a bijective map

T :MT bal(2m+ 1)/A3 −→MS1,1(2m+ 1)σ

where the alternating group A3 acts by relabelling the vertices of the triangle. Arguments

entirely analogous to the ones used in Theorem 6.5 (ii) show that T is continuous and proper,

hence a homeomorphism of topological spaces.

By Proposition 3.24 the space MT bal(2m + 1) is homeomorphic to the disjoint union of

m(m + 1)/2 copies of the open standard simplex ∆̊2. Each component represents triangles of

angles π(m1,m2,m3) with m1 + m2 + m3 = 2m + 1, where (m1,m2,m3) is a triple of positive

integers that satisfy the three triangle inequalities (see Figure 11).

Figure 11: Angle carpets for ϑ = 2m+ 1 odd integer.

Consider now two cases.

(i) Suppose that m 6≡ 1 (mod 3). In this case, the integer 2m + 1 is not divisible by 3 and

so neither of spherical triangles in MT bal(2m + 1) have all equal angles. It follows that

the action of A3 does not send any component to itself. So the number of components of

MS1,1(2m+ 1)σ is m(m+1)
6 and each one is homeomorphic to the open 2-disk ∆̊2.

(ii) Suppose that m ≡ 1 (mod 3). Then the component corresponding to triangles with angles

m1 = m2 = m3 = (2m + 1)/3 is the only one that is sent to itself. It contains a unique

point fixed by A3, namely the equilateral spherical triangle, and the quotient of such com-

ponent by A3 is homeomorphic to an open 2-disk. All the other m(m+1)−2
2 components

of MT bal(2m + 1) are non-trivially permuted by A3: hence, they give m(m+1)−2
6 compo-

nents of MS1,1(2m + 1)σ homeomorphic to ∆̊2. Hence, the total number of connected

components of MS1,1(2m+ 1)σ is m(m+1)+4
6 .
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The rest of the subsection is devoted to a careful analysis of the orbifold structures on our

moduli spaces and to the proof of part (b) of Theorem C and of Theorem D.

4.2.1 Voronoi graph and decorations

The orbifold structure on our moduli spaces is defined in Remark 6.28, but a more explicit

interpretation of such structure for moduli spaces of tori of area 4mπ relies on the notion of

decoration.

We begin with a simple lemma.

Lemma 4.10 (Voronoi graphs of tori of area 4mπ). The Voronoi graph Γ(T ) of a spherical

torus T of area 4mπ has two vertices and three edges of lengths (2mi + 1)π for integers mi ≥ 0.

The two vertices are exchanged by the conformal involution σ. Moreover, projectively equivalent

spherical metrics on a torus have the same Voronoi graph.

Proof. Consider first the case m = 1. A spherical triangle ∆0 with vertices x1, x2, x3 of angles

(π, π, π) is isometric to a hemisphere and its circumcenterO is at distance π/2 from the boundary

of such hemisphere. So the rotations of the hemisphere that take xi to xj fix O. A torus T0

with a σ-invariant metric h of area 4π is isometric to T (∆0) and so it has three edges and two

vertices. Since σ fixes the Voronoi graph Γ(T0) and pointwise fixes the conical point and the

midpoints of the three edges of Γ(T0), it does not fix any other point. In particular, σ exchanges

the two vertices of Γ(T0). Moreover, the vertices of Γ(T0) are at distance π/2 from ∂∆0, and

so the edges of Γ(T0) have length π. It follows that a (multi-valued) developing map for T0

sends the vertices of Γ(T0) to the two fixed points O,O′ for the monodromy, and the edges

of Γ(T0) to meridians running between O and O′. Note that another spherical metric on T0

projectively equivalent to h is obtained by post-composing the developing map of h by a Möbius

transformation that fixes O and O′. Since such transformations preserve the meridians between

O and O′, the two metrics have the same Voronoi graph.

Suppose now m > 1. By Theorem E and Proposition 3.8, a torus T with σ-invariant metric

of area 4mπ is obtained from a torus T0 = T (∆0) of area 4π as above by gluing a sphere Si

with two conical points of angles 2mπ at distance |xjxk| along the geodesic segment xjxk of T0.

The conclusion then follows from the analysis of the case m = 1.

In order to make the role of the conformal involution σ in the below Constructions 4.14-4.16

more transparent, we will need the following.

Definition 4.11 (Decorations on strictly balanced tori). A decoration v of a spherical torus

(T, x) is a vertex v of its Voronoi graph Γ(T ).

The main reason for introducing decorations relies on the following fact.

Lemma 4.12 (Rigidity of 2-marked decorated spherical tori). Decorated 2-marked spherical

tori of area 4mπ have non-trivial automorphisms.
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Proof. Being an isometry, an automorphism is in particular biholomorphic. It is a classical fact

that the only nontrivial biholomorphisms a 2-marked conformal torus (T, x) is the involution σ.

By Lemma 4.10 the Voronoi graph Γ(T ) has two vertices and they are exchanged by σ.

As a consequence, we obtain the following modular interpretration of MS(2)
1,1(2m + 1) as a

topological space.

Remark 4.13 (The topological space MS(2)
1,1(2m+ 1)). The topological space MS(2)

1,1(2m+ 1)

is the moduli space of decorated 2-marked spherical tori of area 4mπ.

By Lemma 4.10, the non-trivial conformal involution σ induces an action σ∗ onMS(2)
1,1(2m+

1) by sending (T,p, v, h) to (T,p, v, σ∗h). Since σ : (T,p, v, σ∗h)→ (T,p, σ(v), h) is an isomor-

phism, we also have σ∗(T,p, v, h) = (T,p, σ(v), h).

4.2.2 Moduli spaces of σ-invariant spherical metrics of area 4mπ

Similarly to what we did in Section 4.1, we first discuss the space of decorated 2-marked tori.

Construction 4.14 (Tori with σ-invariant metrics). If σ is the unique (nontrivial) conformal

involution of a conformal torus, denote by MS(2)
1,1(2m+ 1)σ the set of 2-marked decorated tori

(T, x,p) with a σ-invariant spherical metric of angle (2m+1)2π at x. We recall that triangles in

MT ±bal(2m+ 1) have area 2mπ, integral angles and they are strictly balanced. We then define

the maps

MT ±bal(2m+ 1)

T (2)

--
MS(2)

1,1(2m+ 1)σ

∆(2)

ll

quite as in Construction 4.5. In particular, T (2) sends an oriented triangle ∆ to the 2-marked

torus T (∆) obtained as a union of ∆ and ∆′, with the decoration given by the vertex of Γ(T (∆))

that sits inside ∆.

We easily have the following preliminary result.

Theorem 4.15 (Moduli space of 2-marked σ-invariant tori of area 4mπ). For m > 0 integer,

the space MS(2)
1,1(2m + 1)σ of decorated 2-marked tori with a σ-invariant spherical metric has

the following properties.

(i) The map T (2) : MT ±bal(2m + 1) → MS(2)
1,1(2m + 1)σ is a homeomorphism, with inverse

∆(2).

(ii) MS(2)
1,1(2m+ 1)σ is a disjoint union of m(m+ 1) open 2-disks ∆̊2.

(iii) The group S3 acts on MS(2)
1,1(2m+ 1)σ permuting its components. If m 6≡ 1 (mod 3), then

all orbits have length 6. If m ≡ 1 (mod 3), then one orbit has length 2 and all the other

have length 6.

(iv) The action of σ∗ on the topological space MS(2)
1,1(2m+ 1)σ is trivial.

As an orbifold, the moduli space of 2-marked tori with a σ-invariant spherical metric is isomor-

phic to the quotient of MT ±bal(2m+ 1) by the trivial Z2-action.
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Proof. (i) It is very easy to see that T (2) ◦∆(2) is the identity of MS(2)
1,1(2m+ 1)σ. Vice versa,

∆(2) ◦ T (2) is the identify of MT ±bal(2m+ 1) by Theorem E. Hence, T (2) is bijective. Moreover

T (2) is a homeomorphism by Theorem 6.5.

(ii-iii) follow from Proposition 3.25 and Proposition 3.24.

(iv) is clear, since the 2-marked decorated spherical tori (T,p, v, h) and (T,p, v, σ∗h) are

isomorphic via the map σ.

In view of Remark 6.28, the final claim follows from (iv).

Now we discuss the moduli space MS1,1(2m+ 1)σ of σ-invariant spherical tori.

Proof of part (b) of Theorem C. Recall that MS1,1(2m+ 1)σ is endowed with a 2-dimensional

orbifold structure by Remark 6.28. By Theorem 4.15 (i), the spaceMT ±bal(2m+1) is isomorphic

to the moduli space of decorated 2-marked tori with a σ-invariant metric. On a fixed such torus,

2-markings are permuted by S3 and the decorations are exchanged by σ. Hence, the moduli

space MS1,1(2m + 1)σ is isomorphic (as an orbifold) to the quotient of MT ±bal(2m + 1) by

S3 × 〈1, σ∗〉. By Proposition 3.25, such quotient can be identified to MT bal(2m+ 1)/A3 × Z2,

where the alternating group A3 acts by cyclically relabelling the vertices of the triangles and

Z2 acts trivially by Theorem 4.15 (iv). By Proposition 3.24 the space MT bal(2m+ 1) consists

of m(m+ 1)/2 connected component and it is diffeomorphic to Crpbal(2m+ 1)× ∆̊2.

Consider now two cases.

(b-i) Suppose 2m + 1 not divisible by 3. In this case neither of spherical triangles in

MT bal(2m + 1) have all equal angles, so the action of A3 does not send any component to

itself. So the number of components of MS1,1(2m+ 1)σ is m(m+1)
6 , each one is homeomorphic

to the quotient D of ∆̊2 by the trivial Z2-action and so all points have orbifold order 2.

(b-ii) Suppose 2m + 1 divisible by 3. Then the component corresponding to triangles with

angles m1 = m2 = m3 = (2m + 1)/3 is the only one that is sent to itself. It contains a

unique point fixed by A3, namely the equilateral spherical triangle. This point gives rise to an

orbifold point of order 6 on MS1,1(2m + 1)σ, which belongs to a component homeomorphic

to the quotient D′ of ∆̊2 by Z2 × A3, where Z2 acts trivially. All the other m(m + 1)/2 − 1

components are non-trivially permuted by A3, and they are all homeomorphic to D. Hence,

there aredm(m+1)
6 e connected component, and all points except the equilateral spherical triangle

have orbifold order 2.

4.2.3 Moduli spaces of spherical metrics of area 4mπ

In order to treat spherical metrics that are not σ-invariant, we need a further construction.

Construction 4.16. Given a point O ∈ S2, let R ∈ su(2) be the unique element with tr(R2) =

−1/2 that generates anti-clockwise rotations of S2 at O.

We view the topological spaceMS(2)
1,1(2m+1) as a moduli space of decorated, 2-marked tori
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and we define the following couple of maps

MT ±bal(2m+ 1)× R
Ξ --

MS(2)
1,1(2m+ 1)

ν
ll

as follows.

In order to define Ξ, let ∆ be an oriented triangle in MT ±bal(2m+ 1), and fix a developing

map ι for ∆ that sends its circumcentre v to O ∈ S2. Extend ι to the universal cover of the

torus T (∆), which has a σ-invariant metric h, and is given a 2-marking as in Construction

4.5. For every t ∈ R the map eitR ◦ ι : T̃ → S2 has the same equivariance of ι, and so the

pull-back of the metric of S2 via such map descends to a spherical metric ht on T . We then

define Ξ(T, x,p, v, h, t) := (T, x,p, v, ht).

Figure 12: The developing map ι for T (∆) \ (α ∪ β), where ∆ is a triangle with ϑ = 3

and edges α, β, γ of lengths a, b, c. The two congruent triangles ∆,∆′ are mapped to

antipodal hemispheres, and their edges are mapped to the separating equator.

In order to define ν, consider a 2-marked decorated spherical torus (T, x,p, v, ĥ), whose

metric ĥ is not necessarily invariant under the conformal involution σ. Its developing map

ι : T̃ → S2 has monodromy contained in a 1-parameter subgroup that fixes O = ι(ṽ), where ṽ is a

lift of v, and a maximal circle E. Note that points in eitR ·E sit at constant distance arctan(2e−t)

from O and that the distance from O corresponds to the distance function dv : T → [0, π]

from the vertex v. Thus we also have the function t = − log tan(dv/2) : T → [−∞,∞]. We

remark that a developing map of σ∗(T, x,p, v, ĥ) can be obtained by post-composing ι with
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an isometry of S2 that exchanges O with −O. Hence, t ◦ σ∗ = −t. It follows that ĥ is σ-

invariant if and only if t(x) = 0, namely ι(x̃) ∈ E for any lift x̃ of x. It is easy to see that

modified developing map e−it(x)R ◦ ι has the same invariance as ι and sends x̃ to E. Hence,

the round metric on S2 pulls back and descends to a σ-invariant metric h on T . We define

ν(T, x,p, v, ĥ) := ∆(2)(T, x,p, v, h, t(x)).

Before proceeding, we need a very simple lemma.

Lemma 4.17 (Lipschitz constant of projective transformations). For every t ∈ R, the trans-

formation eitR of S2 has (bi)Lipschitz constant cosh(t). Moreover, along the maximal circle E

it has Lipschitz constant 1/ cosh(t).

Proof. If O is the origin of C and 2|dz|
1+|z|2 is the spherical line element, then the transformation

eitR can be written as z 7→ e−tz. Through the map eitR the metric decreases the most at

E = {|z| = 1}, where the Lipschitz constant is exactly 1/ cosh(t).

The first fact about Construction 4.16 is the following.

Proposition 4.18 (The homeomorphism Ξ). The map Ξ is a homeomorphism and ν is its

inverse.

Proof. It is routine to check that the maps Ξ and ν are set-theoretic inverse of each other. Note

that the restriction of Ξ to MT ±bal(2m + 1) × {0} is a homeomorphism by Theorem 4.15 (i).

Hence, the continuity of Ξ follows from Lemma 4.17.

To show that Ξ is proper, consider a diverging sequence inMT ±bal(2m+1)×R, which we can

assume to be contained in a fixed connected component. By Proposition 3.25 an element of such

component can be identified by a quadruple (l1, l2, l3, t) with 0 < li < 2π and l1 + l2 + l3 = 2π.

A sequence of quadruples diverges if and only if some l̄i → 0 or if |t| → ∞ (up to subsequences).

Since the systole of the triangle corresponding to (l1, l2, l3) is min{l̄i} by Lemma 6.24, the systole

of the torus Ξ(l1, l2, l3, t) is at most min{l̄i}/ log cosh(t)→ 0 by Lemma 4.17. It follows that Ξ

sends diverging sequences to diverging sequences by Theorem 6.3.

SinceMS(2)
1,1(2m+ 1) is a manifold by Proposition 4.18, it can be endowed with an orbifold

structure as in Remark 6.28. We then have the following preliminary result.

Theorem 4.19 (Moduli space of 2-marked tori of area 4mπ). For m > 0 integer, the moduli

space MS(2)
1,1(2m + 1) of 2-marked tori with spherical metric of area 4mπ has the following

properties.

(i) As an orbifold, it is isomorphic to the quotient of MT ±bal(2m+ 1)×R by the action of the

involution σ∗ that flips the sign of the R-factor. Hence it consists of m(m+1) components

isomorphic to ∆̊2 × (R/{±1}).
(ii) The locus in MS(2)

1,1(2m+ 1) of metrics that are invariant under the conformal involution

σ corresponds to MT ±bal(2m+ 1)× {0}.
(iii) The group S3 that permutes the 2-torsion points of the torus acts trivially on R and as in

Proposition 3.25 on MT ±bal(2m+ 1).
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Proof. (i) The action of σ is described in Construction 4.16. The claim follows from Theorem

4.15 (i) and Proposition 4.18.

(ii) is also clear by Construction 4.16.

(iii) follows by noting that relabelling the 2-torsion points does not affect the decoration.

Finally we can prove Theorem D.

Proof of Theorem D. The forgetful map MS(2)
1,1(2m + 1) → MS1,1(2m + 1) is an unramified

S3-cover of orbifolds. By Proposition 4.19 such quotient can be identified to (MT bal(2m+ 1)×
R)/(A3 × Z2), where Z2 acts by flipping the sign of the R-factor and the alternating group A3

acts by cyclically relabelling the vertices of the triangles.

The rest of argument is entirely analogous to the one used in the proof of Theorem C.

5 MS1,1(2m) and MS(2)
1,1(2m) as Belyi curves

The goal of this section is to identify the moduli spacesMS1,1(2m) andMS(2)
1,1(2m) with Belyi

curves and relate their cell decompositions constructed in Corollary 4.9 with the corresponding

dessins. We recall [2, Section 2] and [15] that these two spaces have a canonical complex

structure. This structure is the unique one with respect to which the forgetful map to M1,1

andM(2)
1,1 are holomorphic. We also recall that the compactificationMS(2)

1,1(2m) obtained from

MS(2)
1,1(2m) by filling it the 3m punctures has the orbifold structure that makes it isomorphic

to the quotient of its underlying topological space (which is in fact a Riemann surface) by the

trivial Z2-action. The respective forgetful maps extend to the smooth compactifications of all

the four orbifolds.

The following definition slightly differs from the usual definition of dessin d’enfant, though

it is very similar in spirit.

Definition 5.1 (Belyi functions and dessins). A Belyi function is a holomorphic map ψ : S →
CP 1 from a compact Riemann surface S to the complex projective line CP 1, ramified only over

points 0, 1,∞. The dessin associated to ψ is the 3-partite graph embedded in S obtained as the

preimage of the real line RP 1 ⊂ CP 1 under ψ.

The dessin of ψ can also be seen as the 1-skeleton of the triangulation of S whose open cells

are the preimages through ψ of the two open disks in which RP 1 cuts CP 1.

The main result of this section is the following theorem, which concerns the underlying

Riemann surface MS(2)
1,1(2m).

Theorem 5.2 (The topological spaceMS(2)
1,1(2m) as a Belyi curve). Let m be a positive integer.

Then there is a holomorphic Belyi map ψBel : MS(2)
1,1(2m) → CP 1 of degree m2 from the

Riemann surface underlying MS(2)
1,1(2m) with the following properties.

(i) The preimage of CP 1\{0, 1, ∞} under ψBel coincides with the Riemann surfaceMS(2)
1,1(2m).

(ii) The cycle type of ramification of ψBel over points {0, 1, ∞} is (1, 3, . . . , 2m− 1).
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(iii) The dessin of ψBel is composed of tori T such that the triangle ∆(T ) has one integral angle.

In particular, the triangulation given by this dessin is the one described in Corollary 4.9.

Definition 5.3 (Klein group and Klein sphere). The Klein group K4 is the subgroup of diagonal

matrices in SO(3,R). The Klein sphere SKl is the sphere with three conical points y1, y2, y3

of angles (π, π, π) obtained by taking the quotient of the unit sphere S2 by the action of K4
∼=

Z2 ⊕ Z2. We denote by SKl(R) the circle in SKl which is invariant under the unique anti-

holomorphic isometric involution of SKl.

Using the conformal structure on SKl given by the spherical metric, we can view SKl as

CP 1, where y1 = 0, y2 = 1, y3 =∞, and SKl(R) as RP 1.

Remark 5.4 (Klein sphere as a doubled triangle). We note that SKl can also be obtained

by doubling of the spherical triangle ∆ with angles π, π, π across its boundary. This way ∂∆

corresponds to the circle SKl(R) in SKl. Recall that, in the triangle with three angles π, each

vertex is at distance exactly π
2 from each point of the opposite side. For this reason, points of

SKl(R) are exactly the points on SKl that are at distance π
2 from one conical point.

The key result to parametrize spherical tori using a Hurwitz space is the following.

Proposition 5.5 (Tori of area (2m − 1)π cover the Klein sphere). Let (T, x) be a spherical

torus with a conical point of angle 4πm and with points of order 2 marked by p1, p2, p3. There

exists a unique branched cover map ϕKl : T → SKl of degree 4m− 2, which is a local isometry

outside of branching points, and such that ϕKl(pi) = yi. Moreover ϕKl(x) 6= yi for i = 1, 2, 3.

Proof. We will first construct the map and then will count its degree. Recall [2, Proposition

1.5.1], that the image of the monodromy map ρ : π1(T, x) → SO(3,R) is the Klein group (see

also Corollary A.3). Consider the developing map ι : T̃ → S2 from the universal cover T̃ of

T . This map is equivariant with respect to the action of π1(T, x) on T̃ by deck transformation

and on S2 by the monodromy representation. Hence, by taking the quotient we get a map

ϕKl : T → SKl ∼= S2/K4.

We will now prove that the constructed map ϕKl sends points pi to the three distinct orbifold

points of SKl. This will permit us to label these three points so that ϕKl(pi) = yi. In order to

do this, consider the order two automorphims σ of T and denote by S the quotient T/σ. The

surface S is a sphere with three conical points of angle π, that are the images of the points pi,

and one conical point of angle 2πm. Let us take a lift x̃ ∈ T̃ of x and let σ̃ be the lift of σ to T̃

that fixes x̃. Since the conical angle at x is an even multiple of 2π, the maps ι and ι◦ σ̃ coincide

in a neighbourhood of x̃. It follows that ι is σ̃-invariant and the map ϕKl descends to a map

ϕ′Kl : S → SKl. Now, by construction, the map ϕ′Kl is a local isometry outside of ramification

points. This implies that all three conical points of angle π on S are sent by ϕ′Kl to conical

points of angle π on SKl. Finally, to see that the images of the three conical points are distinct,

we use the fact that the monodromy of S is generated by three loops winding simply around

these points, and it is isomorphic to K4. Hence, we proved that points ϕKl(pi) in SKl are the

50



three distinct conical points of SKl, and so we can label each ϕKl(pi) by yi. This finishes the

construction of the map. Its uniqueness is clear.

To prove that deg(ϕKl) = 4m − 2, we use the fact that ϕKl is a local isometry outside

of branching points. So we have deg(ϕKl) = Area(T )/Area(SKl) = 2π(2m − 1)/π = 4m − 2.

Finally, if ϕKl mapped x to some yi, its local degree at x would be (4mπ)/π = 4m > deg(ϕKl).

This contradiction proves the last claim.

Here is already a first corollary of the above proposition.

Corollary 5.6 (Moduli space of 2-marked tori as a Hurwitz space). As a differentiable orbifold,

the moduli space MS(2)
1,1(2m) is isomorphic to the Hurwitz space Hm of connected degree 4m−2

covers, ramified over points 0, 1,∞ with cyclic type (2, . . . , 2) and over λ 6= 0, 1, ∞ with cyclic

type (1, . . . , 1, 2m).

Proof. To construct the mapMS(2)
1,1(2m)→ Hm, we use Proposition 5.5, that associates to each

spherical torus (T, x) with a 2-marking the branched cover ϕKl : T → SKl. Using the conformal

structure on SKl given by the spherical metric, we view it as CP 1, where y1 = 0, y2 = 1, y3 =∞.

By Proposition 5.5 we know that λ = ϕKl(x) 6= 0, 1, ∞. To find the cyclic type of ramification

over points (0, 1, ∞, λ), we recall that the map ϕKl is a local isometry outside of branching

locus, and so for each preimage of the points 0, 1, ∞ the map has branching of order 2. Finally,

there is only one conical point in the preimage of λ, hence the cyclic type over λ is (1, . . . , 1, 2m).

The inverse map Hm →MS(2)
1,1(2m) is the following. For each ramified cover T → CP 1 ∼=

SKl with the prescribed cyclic type, we pull-back the spherical metric of SKl to T . By Propo-

sition 5.5 the 2-torsion points of T are mapped to y1, y2, y3 and we call pi the unique 2-torsion

point of T that is sent to yi.

In view of the above Corollary 5.6, we can endow MS(2)
1,1(2m) with the unique structure of

complex-analytic orbifold that makes the isomorphism MS(2)
1,1(2m) ∼= Hm complex-analytic.

Now, there are two interesting holomorphic maps. The first map F : Hw → M1,1 sends a

cover (T, x) → (CP1, λ) to the isomorphism class of (T, x), and so it has finite fibers. Since F

can be interpreted as the forgetful map MS(2)
1,1(2m) → M1,1, which is proper and surjective

(see [24]), the map F is a finite (possibly branched) holomorphic cover. The second map

ψBel : Hw → CP1 \ {0, 1,∞} sends a (4m − 2)-cover branched over 0, 1,∞, λ with cyclic type

(22m−1), (22m−1), (22m−1), (2m, 12m−2) to λ. Since the cyclic types are fixed, such ψBel is a finite

unramified cover. In view of the complex isomorphism between Hw and MS(2)
1,1(2m), we have

proven the following.

Corollary 5.7 (MS(2)
1,1(2m) covers the 3-punctured sphere). The map ψBel : MS(2)

1,1(2m) →
CP 1 \ {0, 1,∞} is a finite unramified holomorphic cover.

We need one last lemma.

Lemma 5.8 (Dessin of ψBel). A torus T in the topological space MS(2)
1,1(2m) belongs to the

dessin of ψBel if and only if the balanced triangle ∆(T ) has one integral angle.
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Proof. Let us prove the “if” direction. Suppose that ∆ has an integral angle. Then it has one

side of length π. This means that for some i the distance on T from x to pi is π/2. This means

that the distance on SKl between yi and ϕKl(x) is π/2. Using Remark 5.4, we deduce that

ϕKl(x) belongs to SKl(R). By the definition of the dessin of ψBel we see that T belongs to the

dessin.

Let us now prove the “only if” direction. Suppose that ϕKl(x) belongs to SKl(R). For

example, assume ϕKl(x) ∈ y1y2. Let γ3 be the geodesic loop on T based at x, whose midpoint

is p3. Since half of this geodesic is projected by ϕKl to the segment that joins y3 with the

segment y1y2, we see that |γ3| = π. From Lemma 3.6, it follows that the angle of ∆ opposite to

γ3 is integral.

Proof of Theorem 5.2. (i) The ramified cover is the extension of the cover constructed in Corol-

lary 5.7 to the compactified spaces.

(iii) This is proven in Lemma 5.8.

(ii) Recall that MS(2)
1,1(2m) is glued from two copies of MT bal(2m) and that MT bal(2m)

is obtained by gluing m2 polygons P̂l as in Figure 10 (see also the case ϑ = 6 in Figure 9).

Let us call a “hemisphere” each connected component of CP1 \ RP1 and let us call a “half-

neighbourhood” of a point p ∈ RP1 the intersection of a neighbourhood of p with a closed

hemisphere. Recall now from Construction 3.19 that the ends of MS(2)
1,1(2m) are described by

the strips Si,a(2m) with i = 1, 2, 3 and 0 ≤ a ≤ m− 1. It is easy to see that the “length” of the

strip Si,a(2m), namely the number of regions regions S li,a(2m) such strip is made of, is exactly

2(2a+ 1).

By Lemma 5.8, the finite unramified cover ψBel maps the interior of each P̂l onto a hemi-

sphere, and the three nodal edges of P̂l are mapped to RP1 \ {0, 1,∞}. It follows that, up to

labelling the coordinates, ψBel maps each region S l1,a(2m) to a half-neighbourhood of 0. Hence,

ψBel maps a strip S1,a(2m) of length 2(2a + 1) onto a (punctured) neighbourhood of 0 with

degree 2a+ 1. It follows that that cycle type ramification of ψBel over 0 is (1, 3, 5, . . . , 2m− 1).

Analogous considerations hold for the cycle type ramification over 1 and over ∞.

Finally, we can prove Theorem F.

Proof of Theorem F. To prove this result we will realise MS1,1(2m) is an unramified orbifold

cover of the modular curve H2/SL(2,Z). Recall that in Theorem 5.2 we constructed the unram-

ified covering map ψBel of degree m2 from the topological spaceMS(2)
1,1(2m) to CP 1 \{0, 1, ∞}.

Note that the quotient of CP 1 \ {0, 1,∞} by the trivial Z2-action is an orbifold isomorphic

to H2/Γ(2), where Γ(2) = {A ∈ SL(2,Z) |A ≡ I (mod 2)}. Hence, the above cover can be

promoted to an unramified cover of orbifolds MS(2)
1,1(2m)→ H2/Γ(2) of the same degree.

The symmetric group S3 is acting on MS(2)
1,1(2m) by relabelling the 2-torsion points of the

tori and it acts on H2/Γ(2) through the isomorphism S3
∼= SL(2,Z)/Γ(2).

Since MS(2)
1,1(2m)/S3 = MS1,1(2m) as orbifolds, the covering map then descends to an

unramified orbifold coveringMS1,1(2m)→ H2/SL(2,Z) of degree m2. Note that the cycle type
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ramification of such cover at infinity is (1, 3, . . . , 2m− 1) by Theorem 5.2 (ii). It follows that,

for m > 1, such cover is not Galois and so Gm is not a normal subgroup.

The last claim follows from Theorem 5.2 (iii) after noting that the real locus RP 1 \{0, 1,∞}
inside CP 1 \ {0, 1,∞} ∼= H2/Γ(2) descends to {[it] with t ≥ 1} inside H2/SL(2,Z).

6 Lipschitz topology on MSg,n
In this section we define a natural topology on the set of spherical surfaces with conical sin-

gularities and establish some of its basic properties. We choose the approach using Lipschitz

distance, described, for example in [16, Example, page 71].

Let us first recall the definition of Lipschitz distance between two marked metric spaces.

Definition 6.1. Let (X,x1, . . . , xn; dX) and (Y, y1, . . . , yn; dY ) be two metric spaces with dis-

tinct marked points xi, yi. The Lipschitz distance between them is defined by

dL((X,x), (Y,y)) = inf
f

log(max{dil(f), dil(f−1)}),

where

dil(f) = sup
p1 6=p2∈X

dY (f(p1), f(p2))

dX(p1, p2)

and the infimum runs over bi-Lipschitz homeomorphisms between X and Y that send each xi

to yi. The value max{dil(f),dil(f−1)} is called the bi-Lipschitz constant of the map f .

Furthermore, we say that a map f : X → Y is a bi-Lipschitz embedding with constant c ≥ 1

if for any two points x1, x2 we have

c−1 · dY (f(x1), f(x2)) ≤ dX(x1, x2) ≤ c · dY (f(x1), f(x2)).

We will denote by MSg,n the space of genus g surfaces with n marked conical points up

to a marked marked isometry. By MSg,n(≤A) we denote the subspace of surfaces with area

bounded by A > 0. To state the main two results of this section we recall the notion of the

systole of a spherical surface.

Definition 6.2 (Systole). The systole sys(S) of a spherical surface S is the half length of the

shortest geodesic segment or geodesic loop on S whose end points are conical points of S.

The systole sys(P ) of a spherical polygon P is the minimum of half-distances between all

vertices of P and the distances between a vertex of P with the unions of edges not adjacent to

the vertex. Such a systole is clearly equal to the systole of the sphere obtained by doubling P

along its boundary.

Let MS≥sg,n(≤A) be the subspace of MSg,n(≤A) of surfaces with systole at least s.

Theorem 6.3. MSg,n is a complete metric space with respect to Lipschitz distance. The

function sys(S)−1 is proper on MSg,n(≤A) in Lipschitz topology.
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Let us denote byMPn the space of all spherical polygons with n cyclically labelled vertices

up to isometries that preserve the labelling. We have the following similar result.

Corollary 6.4. The space MPn of spherical polygons with n vertices is complete with respect

to Lipschitz distance. For any positive A > 0 the function sys−1(P ) is proper on the subset

MPn of polygons with area at most A.

To prove Theorem 6.3, we show that surfaces from MS≥sg,n(≤A) admit triangulations into a

finite number of relatively large triangles. This is done in Theorem 6.23 which itself relies on

Delaunay triangulations, constructed in Theorem 6.15. The proof of Corollary 6.4 is similar.

As an application of Theorem 6.3 and Corollary 6.4, we will get the following result on

topology of the space MS(2)
1,1(ϑ) of 2-marked tori, induced by Lipschitz metric L.

Theorem 6.5. (i) Suppose ϑ is not odd. The map T (2) : MT ±bal(ϑ) → (MS(2)
1,1(ϑ),L) is a

homeomorphism of surfaces.

(ii) Let m be a positive integer. The map T (2) :MT ±bal(2m+ 1)→ (MS(2)
1,1(2m+ 1)σ,L) is a

homeomorphism of surfaces.

Recall, that the bijective map T (2) was defined in Construction 4.5, whereas the Lipschitz

distance between two 2-marked tori is measured among maps that preserve 2-marking.

6.1 Lipschitz metric and its basic properties

Here we collect basic results concerning Lipschitz metric with an emphasis on spherical surfaces.

Lemma 6.6. Lipschitz distance defines a metric on the space MSg,n of spherical surfaces of

genus g with n conical points.

Proof. Let (S,x, h) and (S′,x′, h′) be genus g spherical surfaces with n conical points. Let’s

show that dL(S, S′) < ∞, i.e., that there is a bi-Lipschitz map ϕ : (S,x) → (S′,x′). By

definition every point xi has a contractible neighbourhood Ui with polar coordinates (ri, φi) on

which h = dr2
i + ϑ2

i r
2
i dφ

2
i , and similarly for the points x′i. Pick a small ε > 0 so that the subset

Ui(ε) = {ri ≤ ε} ⊂ Ui and U ′i(ε) = {r′i ≤ ε} ⊂ U ′i are compact. Define a map ϕi : Ui(ε)→ U ′i(ε)

so that it is the identity in polar coordinates. Manifestly, such ϕi has bi-Lipschitz constant

max
{
ϑ′i
ϑi
, ϑi
ϑ′i

}
, and it is a diffeomorphism away from xi. Moreover it can be extended to a

homeomorphism ϕ : (S,x) → (S′,x′), that is a diffeomorphism from Ṡ to Ṡ′. Such a map is

clearly bi-Lipschitz.

Also, note that dL(S, S′) = 0 if and only if S and S′ are isometric by [1, Theorem 7.2.4].

All the other properties of the metric are obvious.

Definition 6.7. The Lipschitz topology on the moduli spaceMSg,n of spherical surfaces is the

topology induced by the Lipschitz metric.

The next lemma explains how difference in the values of conical angles of two surfaces affects

the Lipschitz distance between them.
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Lemma 6.8 (Continuity of angle functions). Let U,U ′ be neighbourhoods of conical points x, x′

with conical angles ϑ, ϑ′. Suppose f : U → U ′ is a bi-Lipschitz homeomorphism. Then

max{dil(f),dil(f−1)} ≥ max

(
ϑ

ϑ′
,
ϑ′

ϑ

) 1
2

. (5)

In particular, functions ϑi :MSg,n → R+ are continuous for the Lipschitz topology.

Proof. After scaling by a large constant and passing to the limit, we can assume that the

metrics on U and U ′ are flat, moreover both U and U ′ are flat cones with conical angles

2πϑ, 2πϑ′ correspondingly. Note, that as a result the limit quantity max{dil(f), dil(f−1)} can

only decrease. Replacing f by f−1 if necessary, we can assume that ϑ ≤ ϑ′.
Let us now reason by contradiction. Assume that Inequality (5) is not satisfied. Consider

the radius 1 circle S1 centred at x on U . Since dil(f−1) < (ϑ′/ϑ)
1
2 , the image f(S1) lies at

distance c from x′, where c > (ϑ/ϑ′)
1
2 . Hence, l(f(S1)) ≥ 2πcϑ′. At the same time we have

dil(f) ≥ l(f(S1))

l(S1)
=
l(f(S1))

2πϑ
≥ 2πcϑ′

2πϑ
>

(
ϑ′

ϑ

) 1
2

.

This contradicts our assumption.

Lemma 6.9 (Continuity of systole function). Let (S, h), (S′, h′) be two spherical surfaces from

MSg,n such that dL(S, S′) ≤ d. Then

e−dsys(S, h) ≤ sys(S′, h′) ≤ edsys(S, h).

In particular, the function sys :MSg,n → R+ is continuous for the Lipschitz topology.

Proof. Let S be a spherical surface with conical points x1, . . . , xn. According to [24], sys(S) is

equal to the minimum of half distances between conical points, and half-lengths of all (rectifiable)

simple loops based at some conical point xi, contained in Ṡ ∪ xi and non-contractible in Ṡ ∪ xi.
Any bi-Lipschitz homeomorphsim f from S to S′ that sends conical points xi of S to the

corrisponding points x′i of S′ also sends rectifiable loops based at xi to rectifiable loops based

at x′i. By definition there for any ε > 0 exists a homemorphism fε : S → S′ with bi-Lipschitz

constant ed+ε. This clearly explains the above inequalities.

6.2 Injectivity radius

Here we prove Proposition 6.11 that gives an estimate on the injectivity radius of points on

spherical surfaces in terms of the value of the Voronoi function and the systole of the surface.

Definition 6.10. Let S be a spherical surface and y ∈ Ṡ be a non-conical point. The injectivity

radius inj(y) is the supremum of r such that S contains an isometric copy of a spherical disk of

radius r, embedded in S and centred at y.

For a conical point xi ∈ S the injectivity radius is defined to be the minimum of all distances

from xi to other conical points, and half lengths of geodesic loops based at xi.
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Proposition 6.11. Let S be a spherical surface with conical angles 2π(ϑ1, . . . , ϑn). Then for

any y ∈ Ṡ we have

inj(y) ≥ min(sys(S),VS(y),min
i
ϑi · VS(y)) (6)

Moreover, the following statements hold.

(i) If inj(y) < VS(y), then there exists a closed geodesic loop γ ⊂ Ṡ of length 2inj(y), based at

y. Moreover l(γ) = 2inj(y) < π.

(ii) If VS(y) > π
2 then inj(y) = VS(y).

(iii) Suppose inj(y) < VS(y) and so VS(y) ≤ π
2 . Then, at least one of the following holds

(a) inj(y) > sys(S).

(b) There exists i such that ϑi <
1
2 and inj(y) > mini ϑi · VS(y).

We will need one lemma to prove this result.

Lemma 6.12. Let D be a spherical disk with one conical point x in its interior. Suppose that

the boundary γ of D satisfies `(γ) < 2π, and γ is a geodesic loop with a unique non-smooth

point y. Then there exists an orientation reversing, isometric involution τ on D.

Proof. Note first, that the angle at x is non-integer, otherwise the univalent developing map

from D to S2 would send γ onto a great circle. Consider the sphere S obtained from D by

doubling along γ, and denote by τγ the corresponding isometric involution. Since not all conical

angles of S are integer, there exists a unique anti-conformal isometry τ of S fixing its conical

points. Clearly, τ commutes with τγ and so τ leaves γ ⊂ S invariant. Hence τ induces the

desired involution on D ⊂ S .

Proof of Proposition 6.11. Since clearly inj(y) ≤ VS(y), Inequality (6) immediately follows from

Claim (iii). So, we need to prove Claims (i-iii).

(i) Since inj(y) < VS(y), the existence of a geodesic loop of length 2inj(y), based at y is

straightforward. Indeed, the midpoint of such a loop is a point at distance inj(y) from y, where

disk centred at y of radius inj(y) touches itself. One can check that l(γ) ≤ π, since otherwise

there will be points close to the midpoint of γ that can be joined with y by two distinct geodesic

segments of length less than inj(y). To see that inj(y) < π
2 we note that in case inj(y) = π

2 the

boundary of the open disk centred at y of radius π/2 is a closed geodesic to which the disk is

adjacent twice. This means that S is a standard RP 2, which is impossible since S is orientable.

(ii) Assume VS(y) > π
2 , and suppose by contradiction that inj(y) < VS(y). Let γ be a

geodesic constructed in (i). Let 2πθ and 2π(1− θ) be the angles in which γ cuts the neighbour-

hood of y, and assume without loss of generality that θ ≤ 1
2 .

Take now a point O ∈ S2 and consider a spherical kite OP1QP2 in S2 with ∠O = 2πθ,

∠P1 = ∠P2 = π/2 and l([OP1]) = l([OP2]) = l(γ)/2. Since θ ≤ 1
2 and l([OP1]) ≤ π

2 , one can

check that l([OQ]) ≤ π
2 . In particular the kite lies in the interior of a disk Dr centred at O for

any r ∈ (π/2,VS(y)). Since VS(y) > r, there exists a locally isometric immersion ι : Dr → Ṡ

such that ι(O) = y. By pre-composing ι with rotation, we can arrange so that ι sends the sides

OP1 and OP2 to γ, and ι(P1) = ι(P2) is the mid-point of γ. It is clear then that the segments
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P1Q and P2Q are sent by ι to the same geodesic segment in Ṡ. It follows that ι is not a locally

isometric immersion in any neighbourhood of Q. This is a contraction.

(iii) Since inj(y) < VS(y), by (i) there is a simple geodesic loop γ on Ṡ based at y of length

2inj(y) < π. We will consider separately two possibilities, depending on whether γ is essential9

on Ṡ, or non-essential.

If γ is essential on Ṡ, it follows from [24] that inj(y) = l(γ)/2 > sys(S), and so we are in

case (a).

Let’s assume now that γ is non-essential on Ṡ. Then γ encircles on S a disk D with at most

one conical point in its interior. Since l(γ) < π by (i), the disk D should contain exactly one

conical point, which we denote xi. Denote by 2πθ the angle that γ forms at y in D.

Suppose first that θ ≥ 1
2 . In this case γ forms a convex boundary of the surface S\D. Thanks

to this, using exactly the same method as in [24, Corollary 3.11] one proves that l(γ) > 2sys(S),

and we are in case (a).

Suppose now θ < 1
2 . Since `(γ) < π we can apply Lemma 6.12 to D to get its isometric

involution τ . This involution fixed the midpoint p of γ, and fixes two geodesic segments yxi and

pxi that cut D into two isometric right-angled spherical triangles. Let yp be one of two halves

of γ. The segments yxi, pxi and yp border a triangle xiyp in D with ∠xi = πϑi, ∠y = πθ
2 ,

∠p = π
2 . Since the side yp of the triangle is shorter than π and two adjacent angles are less

than π, the triangle is convex. Since |yxi| > |yp|, we have θi <
1
2 . Applying the sine rule to the

triangle xiyp we get sin(|yp|) = sin(πϑi) sin(|xiy|). Hence

inj(y) = |yp| > sin(πϑi) sin(|xiy|) > 2ϑi sin(VS(y)) >
4

π
ϑi · VS(y),

which proves that we are in case (b).

6.3 Equivalence of Lipschitz and analytic topologies on MT
In this section we prove that Lipschitz distance between triangles induces the same topology on

MT as the topology induced by the embedding in R6, described in Theorem 3.12.

Definition 6.13. The relative Lipschitz distance dL (or L-distance) between two spherical

triangles is the infimum of log(max(dil(f), dil(f−1))) over all the marked bi-Lipschitz homeo-

morphisms f : ∆1 → ∆2 that restrict to a homothety on each edge of ∆1.

The L-distance defines a metric on the space MT of spherical triangles, which we call the

L-metric. We have the following natural statement.

Proposition 6.14. The topologies defined on MT by the L-metric and the L-metric coincide

with the analytic topology given by the angle-side-length embedding Ψ :MT → R6.

Proof. Note that the side-lengths of ∆ are clearly continuous functions in both L and L topolo-

gies. The angles of ∆ are continuous in these topologies thanks to Lemma 6.8, applied to the

9I.e. it doesn’t bound on Ṡ a disk with at most one puncture.
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double of ∆. Furthermore the L-distance is greater of equal to the L-distance. Hence, the

L-topology is finer than the L-topology, which is finer than the analytic topology. For this

reason, we only need to show that for any spherical triangle ∆ and a sequence of triangles ∆i

converging to ∆ in R6 (i.e., in the analytic topology), we have lim dL(∆i,∆) = 0. This claim

can be proven by exhibiting explicit bi-Lipschitz maps between spherical triangles. We will only

treat the case when ∆ is short-sided, since this is the only case needed for the purposes of the

paper.

Following [13, Lemma 4.1] denote by U the open subset of MT consisting of triangles with

angles πϑi, where ϑi < 2. This subset consists of spherical triangles that admit an isometric

embedding into S2. In particular U lies in MT sh, the space of all short-sided triangles. Let’s

first prove that the L-topology coincides with the analytic topology on U .

For two spherical triangles ∆ = x1x2x3 and ∆′ = x′1x
′
2x
′
3 embedded into S2, with incentres

I∆ and I∆′ respectively, define the incentric map Φ : ∆→ ∆′ as the unique map satisfying the

following properties.

• Φ(xi) = x′i, Φ(I∆) = Φ(I∆′).

• Φ is a homothety on each edge xixj .

• For any point p ∈ ∂∆, Φ sends the geodesic segment pI∆′ to a geodesic segment and

restricts to a homothety on it.

Suppose now we have a sequence of embedded triangles ∆i ∈ U whose angles and side-

lengths converge to that of ∆ ∈ U . Then it not hard to see that the bi-Lipschitz constant of the

incentric maps Φ : ∆i → ∆ tends to 1. Hence ∆i converges to ∆ in L-topology as well. This

proves the statement for U .

Let us denote by Uklm ⊂ MT sh the subspace of triangles which can be obtained from

an embedded triangle ∆ by repeated gluing of correspondingly (k − 1), (l − 1) and (m − 1)

hemispheres to the sides x1x2, x2x3 and x3x1 of ∆. From Theorem 4.7 and Lemma 5.2 from

[13] it follows that the sets Uklm give an open cover of MT sh. At the same time, the incentric

map Φ between any two triangles ∆ and ∆′ from U can be naturally extended to a map

Φ̃ : ∆̃→ ∆̃′ between triangles with attached hemispheres. Namely a radius of each hemisphere

is sent isometrically to a radius and the restriction of Φ̃ to both sides of each hemisphere are

homotheties. Since the Lipschitz constants of Φ and Φ̃ clearly coincide, the statement about

the topologies is proven for each Uklm and so for the whole space MT sh.

6.4 Delaunay triangulations

We now turn to triangulations of spherical surfaces into convex spherical triangles. We will

not require the triangulation to induce on the surface the structure of a simplicial complex. In

particular, a triangle can be adjacent to a vertex up to 3 times, and to an edge up to 2 times.

The first result is a variation of the famous Delaunay triangulations of the plane [9] (see also

[25, Section 14] for a modern exposition and references within).
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Proposition 6.15 (Delaunay triangulations). Let S be a spherical surface with conical points

x1, . . . , xn, some of which might have angle 2π. Suppose that the Voronoi function VS is bounded

by π
2 . Then there exists a triangulation of S into convex spherical triangles with the following

“empty circle” property: for each triangle xixjxk of the triangulation there exists a vertex

v ∈ Γ(S) at equal distance r from xi, xj , xk, such that d(xl, v) ≥ r for all l ∈ {1, . . . , n}.

The proof will follow the proof by Thurston of a similar result [28, Proposition 3.1] concerning

triangulations of surfaces with flat metric and conical singularities. We will need the following

elementary lemma.

Lemma 6.16. Let D,D′ ⊂ S2 be two disks of radius less than π
2 . Let x1, x2 ∈ ∂D and x′1, x

′
2 ∈

∂D′ be four distinct points. Suppose x1, x2 don’t lie in the interior of D′ and x′1, x
′
2 don’t lie in

the interior of D. Then the geodesic segments x1x2 ⊂ D and x′1x
′
2 ⊂ D′ are disjoint in S2.

Proof. If D and D′ are disjoint, there is nothing to prove. Suppose D and D′ intersect, and let

y1, y2 be the two points of intersection of the boundary circles ∂D, ∂D′. Let γ be the unique

great circle on S2 passing through y1 and y2. It is now easy to see that the complements D \D′

and D′ \D lie in different hemispheres of S2 with respect to γ. It follows that the segments x1x2

and x′1x
′
2 also lie in different hemispheres, and so they can intersect only in their endpoints.

However, points xi and x′i are distinct, so x1x2 and x′1x
′
2 are disjoint.

Proof of Proposition 6.15. The proof follows very closely the proof of [28, Proposition 3.1]. Let

Γ(S) be the Voronoi graph of S. Let us first explain how to associate to each edge e ⊂ Γ(S) a

dual geodesic segment ě with conical endpoints.

Let p ∈ Γ(S) be a point in the interior of an edge e ⊂ Γ(S), and set r = VS(p). Then

there exists a locally isometric immersion ιp : Dr → S from a radius r < π
2 spherical disk, that

sends the centre of Dr to p. Exactly two of the boundary points of Dr, say y, z, are sent to two

conical points xi, xj of S. Denote by ě the image ιp(yz). It is easy to see that the segment ě is

independent of the choice of p ∈ e.
Let us now deduce from Lemma 6.16 that for any two edges e, e′ ⊂ ΓS their dual edges ě, ě′

do not intersect in their interior points. This is similar the proof of [28, Proposition 3.1]. Let

D, D′ be the disks immersed in S, that correspond to e and e′. Assume by contradiction that

ě, ě′ intersect in their interior point p. Consider the (multivalued) developing map ι : S → S2.

The images of D and D′ under this map are embedded disks, and the images of ě, ě′ are cords

of these disks, intersecting in ι(p). This contradicts Lemma 6.16. Indeed, the endpoints of ě are

conical points that belong to ∂D \D′, and the endpoints of ě′ are conical points that belong to

∂D′ \D. Hence, Lemma 6.16 is applicable to the 4-tuple ι(D, ě,D′, ě′).

Next, we associate to each vertex v of Γ(S) a convex polygon embedded in S, whose edges

ě1, . . . , ěk are dual to the half-edges of Γ(S) adjacent to v. To do so, consider the immersion

ιv : Dr → S of a disk of radius r = VS(v), that sends the centre of Dr to v. There will be exactly

k points, say y1, . . . , yk, on ∂Dr whose images in S are conical points. Let Pv we the convex

hull of the points yi in Dr. Then the map ιv is an embedding on the interior P̊v of the polygon

Pv, it may identify some vertices and it may identify an edge to at most one other edge of Pv.
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Our last observation is that the union of the ιv(P̊v) over all vertices v of Γ(S) coincides with

the complement in S to the union of edges ě. Indeed, since the edges ě can only intersect at

endpoints, each ιv(P̊v) is a connected component of the complement to edges ě. At the same

time, each edge ě is adjacent to one or two open polygons ιv(P̊v) corresponding to the vertices

of the edge e dual to ě. It follows that polygons ιv(Pv) cover the whole S.

Finally, in case some of convex polygons ιv(Pv) are not triangles, we subdivide them by

diagonals into a collection of triangles. This gives us the desired triangulation of S, where for

each triangle xixjxk the point v is the corresponding vertex of the Voronoi graph.

Remark 6.17. Let ∆ be a triangle from Delaunay triangulation with vertices xi, xj , xk and

let v be the corresponding vertex of Γ(S). Then the circumscribed radius of ∆ is equal to

VS(v) = d(v, xi).

6.4.1 Compact subsets of MSg,n(≤A)

In this subsection we prove Proposition 6.22 that singles out a class of compact subsets of

MSg,n(≤A), consisting of surfaces that admit triangulations into triangles of bounded shapes.

Definition 6.18 ((l, r)-bounded triangles and surfaces). Fix constants l ∈ (0, π), r ∈ (0, π2 ).

We say that a convex spherical triangle is (l, r)-bounded if all its sides have length at least l and

its circumscribed circle has radius at most r. A spherical surface is (l, r)-bounded if it admits a

triangulation into (l, r)-bounded spherical triangles.

We will denote by MT l,r the subset of MT consisting of (l, r)-bounded triangles.

Remark 6.19 (Compactness ofMT l,r). The setMT l,r is compact in analytic topology ofMT .

Indeed, let ∆i ⊂ S2 be a sequence of convex triangles from MT l,r with vertices (xi1, x
i
2, x

i
3).

Passing to a subsequence we can assume that the sequences of vertices converge to x1, x2, x3.

We have |xixj | ≥ l and the circle on S2 containing x1, x2, x3 has radius at most r. Hence x1x2x3

is a triangle from MT l,r.

Definition 6.20 (Space of (l, r)-triangulated surfaces). Let µ be a combinatorial type of trian-

gulations of a genus g surface with n marked points, such that the marked points are vertices

of the triangulation. Denote by Y µ
l,r(≤A) the set of all spherical surfaces of area at most A with

a chosen triangulation of type µ, consisting of (l, r)-bounded triangles. The L-distance between

two triangulated surfaces from Y µ
l,r(≤A) is the Lipschitz distance with respect to all the maps

that send the triangulation to the triangulation and restrict to homotheties on the edges.

We recall that, given a compact surface S of genus g with n marked points x, there always

exist triangulations of S whose set of vertices contains x as in Definition 6.20. Indeed, it is

possible to pick a point b ∈ S and 2g loops {γj} based at b such that no γj passes through

x and S \
⋃
j γj is a topological disk. This shows that (S,x) can be obtained from a 2g-gon

P with n marked points x′ in its interior, via pairwise identification of its edges. Thus, every

triangulation of P whose vertices include x′ descends to a triangulation of S whose vertices

include x. The existence of such triangulation of P is obvious.
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Lemma 6.21. The set Y µ
l,r(≤A) is compact in the L-metric.

Proof. From Remark 6.19 and Proposition 6.14 it follows that the subset MT l,r ⊂ MT of

(l, r)-bounded triangles is compact in the L metric. At the same time Y µ
l,r(≤A) can be identified

with a closed subset of the set of (MT l,r)|µ|, where |µ| is the number of triangles in µ.

Proposition 6.22 (L-compactness of (l, r)-bounded surfaces). Fix A > 0, l ∈ (0, π) and

r ∈ (0, π2 ). Then the subset Xl,r(≤A) of MSg,n(≤A) consisting of (l, r)-bounded surfaces is

compact in Lipschitz topology. The analogous statement holds for MPn(≤A).

Proof. Since the area of an (l, r)-bounded triangle is bounded from below, there exists only

finite number of combinatorial triangulations µ of surfaces from MSg,n(≤A). Note that for

each µ the natural map Y µ
l,r(≤A) → MSg,n(≤A), that forgets the triangulation, is continuous,

since it contracts the metric. Hence Xl,r(≤A) is a finite union of images of compact sets under

continuous maps.

6.5 Properness of the function sys(S)−1 on MSg,n(≤A)

In this section we deduce Theorem 6.3 and Corollary 6.4 from the following result.

Theorem 6.23 (Bounded Delaunay triangulations). For any s > 0 we have

(i) Any spherical surface from MS≥sg,n can be triangulated into ( s2 ,
π
4 )-bounded spherical tri-

angles.

(ii) Any spherical polygon P with sys(P ) ≥ s can be triangulated into (f(s), π4 )-bounded spher-

ical triangles, where f is a positive and continuous function.

Proof of Theorem 6.3. Let us first deal with the properness of sys−1. Since sys :MSg,n → R+

is continuous by Lemma 6.9, the subset MS≥sg,n(≤A) is closed inside MSg,n(≤A). Moreover,

MS≥sg,n(≤A) is contained inside the subset X s
2
,π
4
(≤A) ofMSg,n(≤A) consisting of ( s2 ,

π
4 )-bounded

surfaces by Theorem 6.23(i). Since X s
2
,π
4
(≤A) is compact by Proposition 6.22, it follows that

MS≥sg,n(≤A) is compact too and so the restriction of sys−1 to MSg,n(≤A) is proper.

As for the completeness of MSg,n, it is enough to show that for every r > 0 and every

spherical surface S inMSg,n the closed ball B(S, r) = {S′ ∈MSg,n | dL(S, S′) ≤ r} is compact.

By Lemma 6.9 such B(S, r) is contained inside MS≥sg,n(≤A) with s = e−rsys(S) and A =

e2rArea(S). Since MS≥sg,n(≤A) was shown above to be compact and B(S, r) is closed, it follows

that B(S, r) is compact.

Proof of Corollary 6.4. The proof is identical to the proof of Theorem 6.3, where instead of

using Theorem 6.23 (i) one applies Theorem 6.23 (ii).

Proof of Theorem 6.23. (i) We will prove that for any S ∈ MS≥sg,n, there exists a collection of

regular points xn+1, . . . , xn+m ∈ S, such that the surface (S, x1, . . . , xn+m) has the following

three properties.

1) For any i 6= j, d(xi, xj) ≥ s
2 for all i 6= j ∈ {1, . . . , n+m}.
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2) For each i the injectivity radius of xi on S is at least s
4 .

3) For any x ∈ S there is a point xi, such that d(x, xi) ≤ π
4 .

Before proving this claim, let us explain why the statement of the theorem follows from it.

Indeed, suppose that we have such a collection of points. Then let us consider the Delaunay

triangulation of S with respect to points x1, . . . , xn+m that exists thanks to Proposition 6.15.

We claim that all the triangles of the triangulation are ( s2 ,
π
4 )-bounded. Indeed, by condition 3)

and Remark 6.17 each such triangle is isometric to a triangle that can be inscribed in a circle

of radius at most π
4 . At the same time by conditions 1), 2) all sides of the triangle have length

at least s
2 .

Let us now show how to find such a collection of points xn+1, . . . , xn+m ∈ S. We will add

points xn+1, . . . , xn+m by induction. Note first that points x1, . . . , xn satisfy conditions 1) and

2). Suppose that there is a point x ∈ S at distance more than π
4 from points x1, . . . , xn. Let us

denote such x by xn+1 and let us show that (S, x1, . . . , xn+1) satisfies conditions 1) and 2) for

m = 1. Note that by [24, Lemma 3.10] we have sys(S) ≤ π
2 , which means π

4 ≥
s
2 , and so when

we add xn+1 we don’t violate 1). It remains to show that the injectivity radius of xn+1 of S is

at least s
4 . Let’s apply Inequality (6) of Proposition 6.11. We get

inj(xn+1) ≥ min

(
s,
π

4
,min

i
ϑi ·

π

4

)
.

However, by Lemma [24, Lemma 3.13] we know that sys(S) ≤ mini ϑi ·π. So we get inj(xn+1) ≥
s
4 . Hence, condition 2) is satisfied for x1, . . . , xn+1. In this way we can go on adding points xn+i

until condition 3) is satisfied. Indeed, the process must terminate since the s
8 -neighbourhoods

of points xn+i are disjoint disks on S and the area of S is finite.

(ii) To prove the second part of the theorem, we will work with the double S(P ) of P .

We will construct a collection of regular points xn+1, . . . , xn+m ∈ S(P ), such that the surface

(S(P ), x1, . . . , xn+m) has the following three properties.

0) The set of points xi is invariant under the isometric involution τ of S(P )

1) For any i 6= j, d(xi, xj) ≥ s
4 for all i 6= j ∈ {1, . . . , n+m}.

2) For each i the injectivity radius of xi on S is at least s
8 .

3) For any x ∈ S there is a point xi, such that d(x, xi) ≤ π
4 .

Let us explain how to make the first step. Consider P and ∂P as subsets of S(P ). Suppose

there is a point y ∈ S(P ) at distance greater than π
4 from x1, . . . , xn. In case its distance from

∂P is more than π
8 , we set xn+1 = y, xn+2 = τ(y). In such case conditions 0)-2) are still satisfied

for points x1, . . . , xn+2, since d(xn+1, xn+2) ≥ π
4 . Suppose now that d(y, ∂P ) < π

8 . Let y′ be a

point on ∂P closest to y and set xn+1 = y′. Clearly, the distance from xn+1 to x1, . . . , xn is at

least π
8 . For this reason, as in (i) conditions 2) and 3) are still satisfied. This finishes the first

step.

Now, we repeat the above step until we get a collection of points x1, . . . , xn+m in S(P ),

that satisfy all four conditions 0)-3). As in the proof of Proposition 6.15, we get a canonical

decomposition of S(P ) into convex spherical polygons, invariant under the action of τ , and such
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that each polygon has side lengths at least s
4 and can be inscribed in a circle of radius at most

π
4 . Those polygons whose interior doesn’t intersect ∂P should be further cut into triangles by

diagonals. Suppose that the interior of a polygon Q intersects ∂P . Then τ(Q) = Q and using

a τ -invariant subset of diagonals of Q, one can cut it into a union of triangles exchanged by τ

and either a triangle or a trapezoid Q′, satisfying τ(Q′) = Q′. If Q′ is a triangle we take Q′ ∩P
as one of the triangles of the triangulation of P . If Q′ is a trapezoid, we subdivide further

Q′ ∩ P into two triangles along a diagonal. It is not hard to see that the resulting triangles are

(f(s), π4 )-bounded for certain positive function f(s). That concludes the decomposition of P

into triangles.

6.6 Systole of balanced triangles

In this section we calculate the systole of a balanced triangle, show that for a balanced triangle

∆ we have sys(∆) = sys(T (∆)).

Lemma 6.24. Let ∆ be a balanced spherical triangle with vertices x1, x2, x3, then

2sys(∆) = min
i,j

(min(|xixj |, 2π − |xixj |)). (7)

Moreover the following two statements hold.

(i) For any vertex xi of ∆, the distance to the opposite side xixj is larger than sys(∆).

(ii) Let p ∈ ∂∆ be a point that is not a vertex of ∆. Suppose that η is a geodesic segment in

∆ that joins p with xi and doesn’t belong to ∂∆. Then l(η) > sys(∆).

(iii) There exists a geodesic segment γ∆ ⊂ ∆ of length 2sys(∆), that joins two vertices of ∆.

Proof. We will first prove statements (i), (ii) and then will deduce Equality (7).

(i) Let us show that for any p in x2x3 we have d(p, x1) > sys(∆). From Remark 2.12 it

follows that p lies either in the Voronoi domain of x2 or of x3. Assume the former, then by

definition of Voronoi domains, d(p, x1) ≥ d(p, x2).

Suppose first that the strict inequality d(p, x1) > d(p, x2) holds. Applying the triangle

inequality to the points x1, x2, p, and using d(x1, x2) ≥ 2sys(∆) , we get

d(p, x1) ≥ d(x1, x2)− d(p, x2) > d(x1, x2)− d(p, x1) ≥ 2sys(∆)− d(p, x1).

It follows, that d(p, x1) > sys(∆).

Suppose now that d(p, x1) = d(p, x2), then by Remark 2.12 the triangle ∆ is semi-balanced,

p is the mid-point the segment x1x2, and there is a geodesic segment x1p that joins x1 with p.

It is clear then, that 2|x1p| = |x1p|+ |x2p| > 2d(x1, x2) ≥ 2sys(∆).

(ii) Consider two cases. If p lies on the side of ∆ opposite to xi then by (i) we have

`(η) ≥ d(xi, p) > sys(∆). Suppose now p lies on a side adjacent to xj . In this case η cut’s out

of ∆ a digon with angles less than π (since p is an interior point of an edge). So e(η) = π and

the statement follows from Corollary 2.15.
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(ii) Using (i) and Definition 6.2, we see that 2sys(S) = mini,j d(xi, xj). Hence there is a

geodesic segment γ∆ of length 2sys(S) that joins two vertices of ∆.

Let us now prove Equality (7). Let us take the geodesic γ∆ given by 3. It cuts out of ∆ a

digone, one of whose sides is a side xixj of the triangle ∆. If follows that either 2sys(∆) = |xixj |
of 2π − |xixj |. This shows that 2sys(∆) no smaller than the right hand expression in (7). On

the other hand, the opposite inequality follows immediately from Corollary 2.15.

Lemma 6.25. For any balanced triangle ∆ and the corresponding spherical torus (T (∆), x) we

have sys(∆) = sys(T (∆)). Conversely, for any spherical torus T and the corresponding balanced

spherical triangle ∆(T ) we have sys(T ) = sys(∆(T )).

Proof. The first and the second statements are equivalent, so will prove just the first statement.

By Lemma 6.24 (iii), there is a geodesic segment γ∆ in ∆ of length 2sys(∆) that joins two

vertices of ∆. Such γ∆ is embedded as a geodesic loop in T (∆), which clearly implies sys(∆) ≥
sys(T (∆)). Let us prove that sys(∆) ≤ sys(T (∆)). Indeed, let γT (∆) be the systole geodesic

loop in T (∆). Let ∆1,∆2 be two balanced triangles isometric to ∆ from which T (∆) is glued. It

will be enough to prove that γT (∆) lies entirely in ∆1 or ∆2. Assume by contradiction that this

is not so. Then γT (∆) contains two sub-segments η, η′ whose interior lie in the interior of ∆1 or

∆2 and which satisfy the conditions of Lemma 6.24 (ii). Applying this lemma, we get l(γT (∆)) ≥
l(η) + l(η′) > 2sys(∆), which contradicts the established inequality sys(∆) ≥ sys(T (∆)).

Corollary 6.26. The function sys(∆)−1 = 2(mini,j(min(|xi, xj |, 2π − |xi, xj |))−1 is proper on

MT bal(ϑ) in the analytic topology.

Proof. The function sys(∆)−1 is proper onMT (ϑ) in L-topology by Corollary 6.4. At the same

time, by Proposition 6.14 the L-topology and the analytic topology coincide on MT bal(ϑ).

6.7 Proof of Theorem 6.5

Here we finally prove Theorem 6.5 concerning 2-marked tori. We note first that Theorem 6.3

holds for 2-marked tori as well, namely the function sys−1 is proper in Lipschitz topology on

the space MS(2)
1,1(≤A) of such tori of area at most A.

We will use the following standard lemma, whose proof we omit.

Lemma 6.27. Let X and Y be locally compact Hausdorff topological spaces and let ϕ : X → Y

be a continuous bijective map.

(i) If ϕ is proper then it is a homeomorphism.

(ii) Suppose there exist proper functions sX : X → R and sY : Y → R such that sX = sY ◦ ϕ.

Then ϕ is a homeomorphism.

Proof of Theorem 6.5. (i) By Proposition 3.22 (i), MT ±bal(ϑ) is a surface, so we need to show

that T (2) is a homeomophism. To do this let’s explain that we are in the set up of Lemma 6.27.

Indeed, we have the following
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1) Every bi-Lipschitz map ∆→ ∆′ that restricts to a homothety on the edges gives rise to a σ-

equivariant bi-Lipschitz map T (2)(∆)→ T (2)(∆′) with the same Lipschitz constant. Hence, the

map T (2) is contracting with respect to L-metric onMT ±bal(ϑ), namely dL(T (2)(∆), T (2)(∆′)) ≤
dL(∆,∆′). It follows that T (2) is continuous. Moreover, T (2) is bijective by Lemma 4.6.

2) Since MT ±bal(ϑ) is a surface, it is locally compact, and the function sys−1 is proper on it

by Corollary 6.26.

3) The space (MS(2)
1,1(ϑ),L) is locally compact, and the function sys−1 is proper on it by

Theorem 6.3.

4) The map T (2) preserves the function sys−1 by Lemma 6.25.

To sum up, the map T (2) satisfies all the properties of Lemma 6.27, which proves the claim.

(ii) The proof of this claim is the same and so we omit it.

Remark 6.28 (Orbifold structures on MS1,1(ϑ) and MS(2)
1,1(ϑ)). Let MS(4)

1,1(ϑ) be the set

of spherical tori T endowed with a 4-marking, namely an isomorphism H1(T ;Z4) ∼= (Z4)2.

We endow MS(4)
1,1(ϑ) with the Lipschitz distance measured among maps between tori that

respect the 4-marking. Since 4-marked tori have no nontrivial conformal automorphisms, such

MS(4)
1,1(ϑ) is a moduli space for such 4-marked tori. It is easy to see that the forgetful map

MS(4)
1,1(ϑ) → MS(2)

1,1(ϑ) is a local isometry and in fact an unramified Galois cover with group

K/{±1}, where K = ker(SL(2,Z4)→ SL(2,Z2)).

Assume first ϑ not odd. The space MS(2)
1,1(ϑ) is an orientable surfaces of finite type by

Theorem 6.5 and Proposition 3.22 (i), and so the same holds forMS(4)
1,1(ϑ). We endowMS(2)

1,1(ϑ)

with the orbifold structure given by MS(4)
1,1(ϑ)/K and MS1,1(ϑ) with the orbifold structure

MS(4)
1,1(ϑ)/SL(2,Z4). As a consequence, MS(2)

1,1(ϑ) → MS1,1(ϑ) is an unramified Galois cover

with group SL(2,Z2) ∼= S3.

Assume now ϑ = 2m + 1 odd. Again, the space MS(2)
1,1(2m + 1)σ is a disjoint union of

finitely many two-dimensional disks by Theorem 6.5 and Proposition 3.25, and so the same

holds for the moduli spaceMS(4)
1,1(2m+ 1)σ. The same argument as in Construction 4.16 shows

that MS(4)
1,1(2m+ 1) fibres over MS(4)

1,1(2m+ 1)σ with fiber R, and so it is a three-dimensional

manifold. We then put on MS(2)
1,1(2m+ 1) and MS1,1(2m+ 1) the orbifold structures induced

by MS(2)
1,1(2m+ 1) =MS(4)

1,1(2m+ 1)/K and MS1,1(2m+ 1) =MS(4)
1,1(2m+ 1)/SL(2,Z4). We

put a similar structure on the moduli spaces of σ-invariant metrics.

In all cases, the orbifold order of a point in such moduli spaces is the number of automor-

phisms of the corresponding (possibly marked) spherical torus.

Appendix A Monodromy and coaxiality

In this section we prove that a spherical torus with one conical point of angle 2πϑ is coaxial if

and only if ϑ is an odd integer. This was already shown in [2].

In order to prove such result, we recall that monodromy representation of spherical surfaces

can be lifted to SU(2) as shown in the following proposition.
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Proposition A.1 (Lift of the monodromy to SU(2)). Let (S,x) be a spherical surface with

conical points of angles 2π · ϑ and let p ∈ Ṡ be a basepoint. Let ( ˜̇S, p̃) be a universal cover of

(Ṡ, p), endowed with the pull-back spherical metric, and let ι : ˜̇S → S2 ∼= CP1 be an associated

developing map with monodromy representation ρ : π1(Ṡ, p)→ SO3(R). Then there exists a lift

ρ̂ : π1(Ṡ, p)→ SU(2) of ρ such that

(a) the developing map ι extends to the completion Ŝ of ˜̇S and each point of Ŝ \ ˜̇S corresponds

to a loop based at p that simply winds about some xj;

(b) if γj ∈ π1(Ṡ, p) is a loop that simply winds about xj corresponding to a point x̂j in Ŝ \ ˜̇S,

then ρ̂(γj) ∈ SU(2) acts on the complex line ι(x̂j) ⊂ C2 as the multiplication by eiπ(ϑj−1).

Moreover two such lifts multiplicatively differ by a homomorphism π1(S, p)→ {±I}.

Proof. In [23, Proposition 2.12] the statement was proven for a surface S of genus 0. For a

surface of arbitrary genus, the proof of existence for a lift is entirely analogous with minor

modifications. In particular, D will be the complement S \ {q} of an unmarked point q in S,

the vector field V is chosen to be nowhere vanishing on D and having vanishing order 2− 2g at

q, so that the unit normalized vector field V̂ on D has even winding number about q.

Finally, two lifts certainly differ by multiplication by a homomorphism π(Ṡ, p) → {±I}.
Since the eigenvalues of the monodromy about the punctures are fixed by condition (b), such

homomorphism factors through π(S, p)→ {±I}.

We use the above SU(2)-lifting property to characterize 1-punctured tori (S, x) with integral

angles. In order to do that, choose standard generators {α, β, γ} of π1(Ṡ) such that γ = [α, β].

Given a spherical metric on (S, x), its monodromy representation ρ can be lifted to an SU2-

valued representation ρ̂ by Proposition A.1. Call A = ρ̂(α), B = ρ̂(β) and C = ρ̂(γ), and note

that C has eigenvalues e±iπ(ϑ−1).

Corollary A.2 (Monodromy of tori with odd ϑ). Let (S, x) be a spherical torus with one conical

point of angle 2π ·ϑ. Then its monodromy is non-trivial. Moreover (S, x) has coaxial monodromy

if and only if ϑ is odd integral.

Proof. As for the first claim, if the monodromy of (S, x) were trivial, then the developing map

of (S, x) would descend to a cover S → S2 ramified at x only. This is clearly absurd.

As for the second claim, the monodromy ρ is coaxial if and only if ρ̂ is. On the other hand,

since elements in SU(2) are diagonalizable, ρ̂ is coaxial if and only if it is Abelian. Finally, ρ̂ is

Abelian if and only if ρ̂(γ) = I, which implies that ϑ is odd integral.

Corollary A.3 (Monodromy of tori with even ϑ). Let (S, x) be a spherical torus with one

conical point of angle 2π · ϑ. Then the monodromy of (S, x) is isomorphic to the Klein group

K4
∼= Z/2 ⊕ Z/2 if and only if ϑ is even integral. In this case the three nontrivial elements in

the monodromy group are rotations of angle π along mutually orthogonal axes of S2.

Proof. The monodromy is isomorphic to K4 if and only if ρ(α)2 = ρ(β)2 = [ρ(α), ρ(β)] = I.

If ϑ is even integral, then C = −I. Up to conjugacy, we can assume that A is diagonal. The

relation AB = −BA gives that A has eigenvalues ±i and B has zero entries on the diagonal. It
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follows that A2 = B2 = −I and so ρ(α)2 = ρ(β)2 = [ρ(α), ρ(β)] = I. It can be observed that

A, B and AB act on S2 as rotations of angle π along mutually orthogonal axes.

Vice versa, suppose that the monodromy if isomorphic to the Klein group. Then C = ±I
and so ϑ must be integral, but ϑ cannot be odd by Corollary A.2. Hence, ϑ is even.
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