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Abstract

In this paper we determine the topology of the moduli space MS; 1(¥) of surfaces of genus
one with a Riemannian metric of constant curvature 1 and one conical point of angle 27¢.
In particular, for ¥ € (2m — 1,2m + 1) non-odd, MS1 1(?¥) is connected, has orbifold Euler
characteristic —m?/12, and its topology depends on the integer m > 0 only. For ¥ = 2m + 1
odd, MS&71(2m + 1) has [m(m + 1)/6] connected components. For ¢ = 2m even, MS1 1(2m)
has a natural complex structure and it is biholomorphic to H?/G,, for a certain subgroup G,,

of SL(2,Z) of index m?, which is non-normal for m > 1.
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1 Introduction and main results

The subject of this paper is the moduli space of spherical tori with one conical point. We recall
that a spherical metric on a surface S with conical points at the points € = {x1,...,x,} € S is
a Riemannian metric of curvature 1 on S := S\ @, such that a neighbourhood of x; is isometric
to a cone with a conical angle 279, > 0.

Let us immediately specify what we mean by the moduli space MS ,,(¥9) of spherical surfaces
in this paper. As a set, MS, (V) parametrizes compact, connected, oriented surfaces of genus
g with a spherical metric that has conical angles (27¢1,...279,) at marked points zy, ..., x,.
Two surfaces correspond to the same point of the space if there is a marked isometry from one
to the other. In order to define a topology on MS, ,,(¢), we consider the bi-Lipschitz distance
between marked surfaces, as in [16]. Such a distance defines a metric, and the corresponding
topology on MS, ,,(¥) is called the Lipschitz topology; its properties are discussed in Section 6.

As a spherical metric defines a conformal structure on the surface, we have the forgetful map
F: MS8gn(0) = My, where Mg, is the moduli space of conformal structures on (.5, x).

Since a neighbourhood of a smooth point on S is isometric to an open set on the sphere
equipped with the standard spherical metric, by an analytic continuation we obtain an orientation-
preserving locally isometric developing map f : S — S Strictly speaking, the developing map is

defined on the universal cover of S but it is sometimes convenient to think of it as a multivalued



function on S.

The developing map defines a representation of the fundamental group of S to the group
SO(3) of rotations of the unit sphere S?. The image of this representation is called the mon-
odromy group.

The goal of this article is to provide an explicit description of the moduli space MS; 1(¢¥)
of spherical tori with one conical point.

Spherical tori with one conical point were also studied in [2, 5, 6, 11, 12, 20, 21].

1.1 Main results

Our main results consist of Theorems A-F and they are stated in the following three subsections.

1.1.1 ¢ not an odd integer

Theorem A (Topology of MS11(9) for ¥ not odd). Take ¥ € (1,00) that is not an odd
integer and set m = L%J The moduli space MS11(0) of spherical tori with a conical point
of angle 27 is a connected orientable two-dimensional orbifold of finite type with the following
properties.
(i) As a surface, MS11(0) has genus L%j and m punctures.
(11) The moduli space MS1 1(9) has orbifold Euler characteristic x(MS11(9)) = —%2. More-
over, it has at most one orbifold point of order 4 and at most one orbifold point of order
6. All the other points are orbifold points of order 2.
(111) The moduli space MS1 1(9) has one orbifold point of order 6 if and only if di(9,6Z) > 1.
(tv) The moduli space MS11(0) has one orbifold point of order 4 if and only if di(9,4Z) > 1.

Note that for 99 = 2m this theorem gives a positive answer to the question of Chai, Lin, and
Wang [2, Question 4.6.6, a], whether MS; 1(2m) is connected.

We refer to [7] for a general treatment of orbifolds. In fact we adopt a slightly more general
definition of orbifolds that includes the case in which all points can have orbifold order greater
than 1. The definition of orbifold Euler characteristic is given at page 29 of [7]. This is coherent
with the definition used, for example, in [17]. A few properties of the orbifold Euler characteristic
are listed in Remark 4.7.

Note that in [14] we used a different convention and we endowed our moduli spaces with an
orbifold structure for which the order of each point is half the number of automorphisms of the
corresponding object. Thus, the orbifold Euler characteristics computed in [14] are twice the

ones that would be obtained following the convention of the present paper.

Remark 1.1 (Orbifold structure and isometric involution). For ¢ not odd, spherical metrics
in M&1,1(VY) are invariant under the unique conformal involution o of tori (see Proposition
2.17). Thus every such spherical torus is a double cover of a spherical surface of genus 0 with
conical points of angles (7, m, 7, 7), and so the moduli space MS; () is homeomorphic to

MSp 4 (g, %, %, %) /Ss as a topological space. On the other hand, the orbifold order of a point in



MS1(¥) exactly corresponds to the number of (orientation-preserving) self-isometries of the

corresponding spherical torus. This explains why every point of MS; () has even orbifold

order, as stated in Theorem A. Thus MS; () is not isomorphic to the orbifold quotient
9111

MSOA (fa 279 5) /S3

An important geometric input on which Theorem A hinges is the notion of balanced spherical

triangles and Theorem B, describing the relation between spherical tori and balanced triangles.

Definition 1.2 (Spherical polygons). A spherical polygon P with angles 7 - (¢1,...,9,) is a
closed disk equipped with a Riemannian metric of constant curvature 1, with n distinguished
boundary points 1, . .., x, which are called vertices, and such that the arcs between the adjacent
vertices are geodesics forming an interior angle 7wv); at the i-th vertex. Two polygons are

isometric if there is an isometry between them that preserves the labelling.
Spherical polygons with two or three vertices are called digons or triangles' correspondingly.

Definition 1.3 (Balanced triangles). A spherical triangle A with angles 7 - (¥, ¥2, ¥3) is
called balanced if the numbers 91, ¥9, U3 satisfy the three triangle inequalities. If the triangle
inequalities are satisfied strictly, we call the triangle strictly balanced. If for some permutation
(4,7,k) of (1,2,3) we have ¥; = ¥; + U}, we call the triangle semi-balanced. If 9; > 9; + O}, for

some %, we call the triangle unbalanced.

We mention that semi-balanced triangles are called marginal in [14] and [13].

Whenever a spherical triangle is realised as a subset of a surface we will induce on it the
orientation of the surface. We will say that two oriented spherical surfaces (or polygons) are
conformally isometric (or congruent) if there is an orientation preserving isometry from one

surface (or polygon) to the other.

Terminology (Integral angles). Throughout the paper, angles will be measured in radiants.
Nevertheless, an angle 279 at a conical point of a spherical surface is called integral if ¥ € Z;

similarly, an angle 71 at a vertex of a spherical polygon is called integral if ¥ € Z~y.
Now we describe a construction that will be omnipresent in this paper.

Construction 1.4. To each spherical triangle A with vertices x1,z2, 23 one can associate a
spherical torus T'(A) with one conical point by taking a conformally isometric triangle A’ with
vertices x7, 75, v3 and isometrically identifying each side x;x; with the side zx] (in such a way
that x; is identified to x; and x; is identified to ) for 4,5 € {1, 2, 3}. The angle at the conical
point of T'(A), that corresponds to the vertices of the triangles, is twice the sum of the angles

of A. If A is endowed with an orientation, then 7'(A) canonically inherits an orientation.

'We note that spherical triangles in the sense of our definition are called sometimes Schwarz-Klein triangles, to

distinguish them from triangles understood as broken geodesic lines on the sphere. See, for instance, [13].



To state the next result we need two more notions. Let T be a spherical torus with one
conical point. An isometric orientation-reversing involution on T will be called a rectangular
involution if its set of fixed points consists of two connected components. By a geodesic loop
based at a conical point = we mean a loop based at z, which is geodesic in T = T'\ {z} and

which passes through x only at its endpoints.

Theorem B (Canonical decomposition of a spherical torus for non-odd ). Let (T,x) be a
spherical torus with one conical point of angle 20 such that 9 € (1,00) \ (2Z + 1).

(i) If T does not have a rectangular involution, then there exists a unique (up to a re-ordering)
triple of geodesic loops 1, Y2, v3 based at x that cut T into two congruent strictly balanced
spherical triangles.

(i) If T has a rectangular involution, there exist exactly two (unordered) triples of geodesic
loops such that each of them cuts T into two congruent balanced triangles. Moreover, such

triangles are semi-balanced. These two triples are exchanged by the rectangular involution.

We recall that, by [24, Section 4], the Voronoi graph associated to a spherical surface with
n conical points decomposes such surface into the union of n topological disks with one conical
point each. Indeed, the role of this Voronoi graph is analogous to the role of the critical graph
of a Jenkins-Strebel differential (a procedure that allows to build a spherical surface out of a
Jenkins-Strebel differential is described in [26]).

In order to prove Theorem B, we note that the complement of the Voronoi graph of the
spherical torus (7T, z) is one disk, and that such disk can be further split into two congruent
triangles using the conformal involution of the torus. As a consequence of Theorem B, to each
spherical torus T" one can associate an essentially unique balanced spherical triangle A(T"). Such
uniqueness will permit us to reduce the description of the moduli space MS1 1() to that of

the moduli space of balanced triangles of area (¢ — 1).

1.1.2 ¢ odd integer

The case when 1 is an odd integer is quite different, as not all spherical metrics are invariant
under the unique (nontrivial) conformal involution o of the tori. We begin by stating our result

for metrics that are o-invariant.

Theorem C (Topology of MS;1(2m + 1)7?). Fiz an integer m > 1 and consider the moduli

space MS11(2m + 1)7 of tori with a o-invariant spherical metric of area 4mm.

m(m—l—l)—l

(a) As a topological space, MS1,1(2m+-1)7 is homeomorphic to the disjoint union of [ ==

two-dimensional open disks.
(b) MS11(2m + 1)7 is naturally endowed with the structure of a 2-dimensional orbifold with
[%] connected components, which can be described as follows.
(b-i) Ifm £ 1 (mod 3), then all components are isomorphic to the quotient D of A2 = {y €
Ri | y1+y2+ys = 2w} by the trivial Za-action. Hence, every point of MS1 1(2m+1)7
has orbifold order 2.



(b-i3) If m =1 (mod 3), then one component is isomorphic to the quotient D' of A2 by Zo X
As, where Zs acts trivially and As acts by cyclically permuting the coordinates of 52,
and all the other components are isomorphic to D. Hence, one point of MS1 1(2m +
1)? has orbifold order 6 and all the other points have order 2.

Remark 1.5. Similarly to Remark 1.1, as a topological space MS1 1(2m~+1)? is homeomorphic
to MSo4 (m + %, %, %, %) /Ss (though they are not isomorphic as orbifolds). Thus, Theorem C
has connection with the results contained in [2], [21], [6], [11] and [12].

The following description of the moduli space of tori with metrics that are not necessarily

o-invariant will be deduced from Theorem C.

Theorem D (Topology of MS11(2m + 1)). For each positive integer m the moduli space
MS11(2m + 1) is a 3-dimensional orbifold with [%] connected components.

(1) If m # 1 (mod 3), then all components of MS1 1(2m + 1) are isomorphic to the quotient
M of A2 x R by the involution (y,t) — (y, —t).

(i) If m =1 (mod 3), then one component of MS11(2m+1) is isomorphic to the quotient M’
of A2 X R by Zs x Az, where Zs acts via the involution (y,t) — (y,—t) and the alternating
group Ag acts by cyclically permuting the coordinates of A2, All the other components are
isomorphic to M.

The locus MS11(2m + 1)7 of o-invariant metrics correspond to t = 0.

In order to understand what happens for spherical metrics that are not necessarily o-

invariant, we recall the following.

Definition 1.6 (Coaxiality). A monodromy is coazial if and only if it is contained inside a

one-parameter subgroup SO(3,R). A spherical surface is called coazial if its monodromy is.

Note that every spherical metric with non-trivial coaxial monodromy on a surface belongs to
a l-parameter family of metrics that induce the same CP!-structure: we will say that metrics

in the same 1-parameter family are projectively equivalent.

In the present case, a spherical metric on a torus 7" with one conical point of angle 271 have
non-trivial monodromy; moreover, the monodromy is coaxial if and only if ¥ is odd. This fact
is proven in [2, Theorem 5.2] and can be also deduced by combining the observations contained
in [19, page 8] with [4, Proposition 1.4]. In the present paper we reprove this statement using
an argument based on monodromy considerations (see Corollary A.2).

The above discussion shows that every spherical surface in MS7 1(2m + 1) belongs to a
1-parameter family of projectively equivalent metrics, which thus traces a copy of R inside
MS11(2m + 1). Moreover, in every family there exists exactly one metric which is o-invariant
(see Proposition 2.17). For this reason MS; 1(2m + 1) is isomorphic to the moduli space
MS1.1(2m + 1)/proj of projective classes of spherical tori of area 4mm, and so MS71(2m + 1)

is three-dimensional.



Another major difference with the non-odd case concerns the forgetful map: for ¥ non-odd
the forgetful map M8y 1(9) — M is proper (see [24]) and surjective, whereas this is not so
for odd ¥ (see [20]). The boundary of MS 1(2m + 1)/proj inside the space of CP!-structures
describes interesting real-analytic curves (see [2]), that are investigated in the sequel paper [14].

Theorems C-D will rely on the following result that links moduli spaces of tori to moduli

spaces of balanced triangles with integral angles.

Theorem E (Canonical decomposition of a spherical torus with odd ). Fiz a spherical torus
with one conical point of angle 2mw(2m + 1). In the same projective class there exists a unique
spherical torus (T,x) that admits an isometric orientation-preserving involution. Moreover,
there exists a unique collection of three geodesic loops v1, Yo, 3 based at x that cut T into two

congruent balanced spherical triangles A and A" with integral angles 7 - (m1, ma, m3).

1.1.3 1 even integral

Our final main result concerns the moduli spaces MS7,1(2m), where m is a positive integer.
It is known [2, 15] that these moduli spaces have a natural holomorphic structure with respect
to which they are compact Riemann surfaces with punctures. This is the unique conformal
structure which makes the forgetful map to M ; holomorphic. With this structure MS1 1(2m)

is an algebraic curve.

Theorem F (MS;1(2m) is a Belyi curve). For each integer m > 0 there ezists a subgroup
Gm < SL(2,Z) of index m? such that the orbifold MSy1(2m) is biholomorphic to the quotient
H? /G- Such G, is non-normal for m > 1. Moreover, the points in H?/G,, that project to the
geodesic ray [i,00) in the modular curve H?/SL(2,Z) correspond to tori T such that the triangle
A(T) has one integral angle.

1.2 Analytic representation of spherical metrics

Let (T, z) be a spherical torus with a conical singularity at x of angle 27w1J. The pull-back of the
spherical metric via the universal cover C = T' — T has area element e*|dz|?. Then function u
satisfies the non-linear PDE

Au+ 2e* =27(9 — 1)dp, (1)

where dp is the sum of delta-functions over the lattice A and 7" is biholomorphic to C/A. So
our results describe the moduli spaces of pairs (A, u), where u is a A-periodic solutions of (1).
Equation (1) is the simplest representative of the class of “mean field equations” which have
important applications in physics [27].
The general solution of (1) can be expressed in terms of the developing map f : C — CP!

related to the conformal factor u by



and the developing map f = wj/wy is the ratio of two linearly independent solutions wj, wy of

-1
w' = (19 1 p—c) w, (2)

where p is the Weierstrass function of the lattice A and ¢ € C is an accessory parameter. So

the Lamé equation:

our results can be also interpreted as a description of the moduli space of projective structures
on tori whose monodromies are subgroups of SO(3,R).

Most of the known results on spherical tori are formulated in terms of equations (1) and (2).
For example, it is proved in [3] that when ¢ is not an odd integer, then the Leray—Schauder
degree of the non-linear operator in (1) equals [(J + 1)/2]. An especially well-studied case is
the classical Lamé equation (2) where ¥ is an integer, see [2, 14] and references there. Solutions

of (2) with odd integer 9 are special functions of mathematical physics, [29, 22].

1.3 The idea of the proof of Theorem A

Here we give a brief summary of the proof of Theorem A, since various parts of it stretch through
the whole paper. Fix ¥ > 1 not odd and consider spherical tori with a conical point of angle
271, and area 2m(¥ — 1). The proof of Theorem A develops through the following steps.

e On every torus the unique non-trivial conformal involution is an isometry (Proposition
2.17 (i)).

e Every spherical torus is obtained by gluing two isometric copies of a spherical balanced
triangle with labelled vertices in an essentially unique way (Theorem B, proven in Section
2.4). Such result has a clear refinement for tori with a 2-marking (namely, a labelling of
its 2-torsion points), see Construction 4.5.

e The doubled space Mlefal(ﬁ) of balanced triangles of area w(J — 1) is the double of the
space MT pq(0) of balanced triangles of area 7(¥ — 1) and it describes oriented balanced
triangles up to some identifications that only involve semi-balanced triangles (Definition
3.21).

e The space M7, (1) is an orientable connected surface with boundary and its topology is
completely determined (Proposition 3.20) and so is the topology of M7, (9) (Proposition
3.22).

e As a topological space, the space /\/1852% () of isomorphism classes of 2-marked tori is
homeomorphic to MT3,(9) (Theorem 6.5).

e As an orbifold, MSQ (9) is isomorphic to the quotient of M7, (¥) by the trivial Zo-
action. This allows to determine the topology and the orbifold Euler characteristic of
MS@(??) (Theorem 4.8).

e The map MSﬂ(i?) — MSy1(9) that forgets the 2-marking is an unramified orbifold
Ss-cover, where S3 acts on ./\/1552% (9) by permuting the 2-markings (Remark 6.28). This
allows to describe the points in MS; 1 () of orbifold order greater than 2 (Proposition 4.4)
and to determine the topology and the orbifold Euler characteristic of MS1 1(¥) (Theorem
A, towards the end of Section 4.1).



1.4 Content of the paper

The relation between spherical tori with one conical point and balanced spherical triangles is
established in Section 2, which culminates in the proof of Theorem B. The section contains
a careful analysis of the Voronoi graph of a torus and of the action of the unique non-trivial
conformal involution o on its spherical metric.

In Section 3 we describe the topology of the space of balanced triangles of area 7(¢ — 1) and
of its double, separately considering the case ¥ non-odd and ¥ odd. Here we visualize the space
of spherical triangles with assigned area, which is a manifold, by looking at its image (which we
call carpet) through the angle map ©. The balanced carpet will turn out to be a useful tool in
computing the topological invariants of the space of balanced triangles.

In Section 4 we describe the topology of the moduli spaces of spherical tori with one conical
point, endowed with the Lipschitz metric (which we study in Section 6). For 9 non-odd, we first
establish a homeomorphism between the doubled space of balanced triangles and the topological
space of 2-marked tori using tools from Section 6. Then we prove Theorem A. For ¢ odd, we
first prove Theorem E using results from Section 2 and Section 3, which immediately allows us
to prove part (a) of Theorem C. Then we endow our moduli space of o-invariant spherical tori
with a 2-dimensional orbifold structure and we prove part (b) of Theorem C. Finally, using
one-parameter projective deformations of o-invariant spherical metrics, we put a 3-dimensional
orbifold structure on the moduli space of (not necessarily o-invariant) tori and we prove Theorem
D.

In Section 5 we analyse the moduli space of tori with ¥ even and we prove Theorem F by
identifying it to a Hurwitz space of covers of CP! branched at three points. This permits us to
exhibit this moduli space as a Belyi curve and to characterize tori that sit on the 1-dimensional
skeleton of its dessin.

Section 6 deals with properties of the Lipschitz metric on moduli spaces of spherical surfaces
with conical points with area bounded from above. The main result of the section is Theorem
6.3 on properness of the inverse of the systole function. Then the treatment is specialized to tori
with one conical point of angle 27¢ with ¥ non-odd (or with ¥ odd and a o-invariant metric).
The section culminates with establishing the homeomorphism between the space 2-marked tori
and the doubled space of balanced triangles, needed in Section 4. A last remark explains how
to use such result to endow our moduli spaces with an orbifold structure.

In the short Appendix A we prove a general SU(2)-lifting theorem for the monodromy of a

spherical surface, and we apply to the case of 1 odd and ¥ even to explain their special features.
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2 Voronoi diagram and proof of Theorem B

In this section we will study the Voronoi graphs of spherical tori (7', x, ) with one conical point

and prove Theorem B.

2.1 Properties of Voronoi graphs, functions and domains

In this subsection we remind the definition of Voronoi graph [24, Section 4] and apply it to

spherical tori with one conical point.

Definition 2.1 (Voronoi function and Voronoi graph). Let S be a surface with a spherical
metric and conical points . The Voronoi function Vg : S — R is defined as Vs(p) := d(p, x).
The Voronoi graph T'(S) is the locus of points p € S at which the distance d(p, x) is realized by
two or more geodesic arcs joining p to . We will simply write I' = I'(S) when no ambiguity
is possible. The Voronoi domains of S are connected components of the complement S\ T'(.S).
Each Voronoi domain D; contains a unique conical point x; and this point is the closest conical

point to all the points in the domain.

Various properties of Voronoi functions, graphs, and domains of spherical surfaces were
proven in [24, Section 4], and the following lemma lists some of the facts needed here. To

formulate the last two properties we need one more definition.

Definition 2.2 (Convex star-shaped polygons). Let D be a disk with a spherical metric, con-
taining a unique conical point z € D and such that its boundary is composed of a collection of
geodesic segments. We say that D is a convex and star-shaped polygon if any two neighbouring
sides of D meet under an interior angle smaller than 7 and for any point p € D there is a unique

geodesic segment that joins z with p.

Proposition 2.3 (Basic properties of the Voronoi function and graph). Let S be a spherical
surface of genus g with conical points x1,...,Ty,.
(i) The Voronoi function is bounded from above by 7, namely Vg < 7.
(ii) The Voronoi graph T'(S) is a graph with geodesic edges embedded in S and contains at
most —3x(S) = 6g — 6 + 3n edges.
(iii) The valence of each vertex of I'(S) is at least three. For any point p € I'(S) its valence
coincides with the multiplicity pp, i.e., there ewist exactly p, geodesic segments in S of
length Vg (p) that join p with conical points of S.

2

(iv) The metric completion of each Voronoi domain® is a convex and star-shaped polygon with

a unique conical point in its interior.

2The metric completion can differ from the closure of the domain inside S, see the rightmost example in Figure 2.
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(v) Let~y be an open edge of I'(S). Let D; and D; be two Voronoi domains adjacent to ~y. Let
A C D; and A" C Dj be the two triangles with one vertex x; or xj correspondingly, and
the opposite side v. Then A and A’ are anti-conformally isometric by an isometry fiving
.

Proof. (i) This is proven in [24, Lemma 4.2].

(ii) This is proven in [24, Lemma 4.5, Corollary 4.7].

(iii) The valence of vertices is at least three by [24, Corollary 4.7]. The valence of a point
on I'(S) coincides with its multiplicity by [24, Lemma 4.5].

(iv) The convexity is proven in [24, Lemma 4.8]. The fact that each domain is star-shaped
follows from the fact that each point p in it can be joined by a unique geodesic segment of length
Vs(p) with the conical point. Such a segment varies continuously with p, since Vg(p) < 7.

(v) To find the isometry between A and A’ just notice that by definition each point p €
can be joined by two geodesics of the same length with z; and z;. Also these two geodesics
intersect v under the same angle. The isometry between the triangles is obtained by the map

exchanging each pair of such geodesics. O

Threefoil Eight graph Eyeglasses graph

Figure 1: Voronoi graphs on a sphere with three conical points

Example 2.4 (Voronoi graph in a sphere with 3 conical points). Let S be a sphere with three
conical points. It follows from Proposition 2.3 (ii) that the Voronoi graph I'(S) is either a trefoil
graph or an eight graph, or an eyeglasses graph, see Figure 1. Indeed, I'(S) splits S into three
disks, and it has at most three edges.

The next definition and remark explain how to define Voronoi functions and graphs for

spherical polygons, mimicking Definition 2.1.

Definition 2.5 (Voronoi function and graph of a polygon). Let P be a spherical polygon with
vertices . The Voronoi function Vp : P — R is defined as Vp(p) := d(p, ). The Voronoi graph
I'(P) of P consists of points p of two types: first, the points for which there exists at least two
geodesic segments of length d(p, x) that join p with x; second, the points p on 9P for which the

closest vertex of P does not lie on the edge to which p belongs.

11



Remark 2.6 (Doubling a polygon: Voronoi function and graph). To each spherical polygon P
one can associate a sphere S(P) with conical singularities by doubling® P across its boundary.
Such a sphere has an anti-conformal isometry that exchanges P and its isometric copy P’, and
fixes their boundary. It is easy to see that the function Vg p) restricts to Vp on P C S and to
Vpr on P’ C S. One can also check that the Voronoi graph I'(S(P)) is the union I'(P) UT'(P').

As a result, the statements of Proposition 2.3 have their analogues for spherical polygons.

The following lemma gives an efficient criterion permitting one to verify whether a given

geodesic graph on a spherical surface is in fact its Voronoi graph.

Lemma 2.7 (Voronoi graph criterion). Let S be a spherical surface of genus g with conical
points x1,...,x, and let T'(S) C S be a finite graph with geodesic edges embedded in S. Then
I'(S) =T(S) if and only if the following two conditions hold.
(a) S\I'(S) is a union of disks whose metric completions are convex and star-shaped polygons
each with a unique conical point in its interior.
(b) For each point p € TV(S) all geodesic segments, that join p with some conical point of S
and intersect T'(S) only at p, have the same length.

Proof. Since by Proposition 2.3 the graph I'(S) satisfies the conditions (a) and (b), we only
need to prove the “only if” direction.

For each conical point x; let D; be the Voronoi domain of x; (namely the connected compo-
nent of S\ I'(S) that contains z;), and let D} be the component of S\I"(S) containing x;. Let’s
assume by contradiction that there is a point p € D; that is not contained in D. By definition
of D; there is a unique geodesic segment y(p) of length Vs(p) that joins p with z;. Denote by
7'(p) the connected component of the intersection v(p) N D} that contains z; and let p’ ¢ Dj
be the point in its closure. Clearly p’ belongs to IV(S). By (a) each component of S\ IV(S5)
is star-shaped, so using (b) we get a second (different from 7/(p)) geodesic segment of length
Vs(p') that joins p’ with a conical point. Hence p’ € T'(S), which contradicts the fact that p’ is
in D;.

We proved that D; C D} for each i. It follows that D; = D), hence I''(S) = T'(S). O

Lemma 2.8 (Voronoi graphs of a sphere with three conical points). Let S be a sphere with
three conical points x; of conical angles 2m;.
(i) T'(S) is a trefoil if and only if V1, U2, U3 satisfy the triangle inequality strictly.
(it) T'(S) is an eight graph if and only if ¥; = 9;+ 0y, for some permutation (i, j, k) of {1,2,3}.
(iii) T'(S) is an eyeglasses graph if and only if ¥; > ¥; + Oy, for some permutation (i, j, k) of
{1,2,3}.
(iv) In the cases (i) and (i) the vertices of I'(S) are equidistant from x1,x2,x3. In the case

(iii) the vertices of I'(S) are not equidistant from x1,x2, T3.

3Given a topological space X and a closed subset A, the doubling of X along A is obtained from X x {0,1} by
identifying (a,0) ~ (a,1) for every a € A.
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Figure 2: Three types of spheres

Proof. It is enough to prove the “only if” parts of claims (i), (ii), (iii) the cases are mutually
exclusive and so the “if” part will follow as well.

For the proof of the “only if” part all three cases are treated in a similar way. Let us consider,
for example, the case when I'(S) is a trefoil graph. Let’s show that in this case 1J; satisfy the
triangle inequality strictly. Denote the two vertices of I'(S) as A and B. The three edges if
I'(S) cut S into three Voronoi disks, each of which contains one conical point. Let us denote
these three segments of I'(S) by 71,72,73, as it is shown on the leftmost picture in Figure 2.
Let us join each of the x; with the vertices A and B by geodesics z; A, x; B of lengths Vg(A)
and Vg (B) correspondingly. These geodesic segments are depicted in gray.

Consider now the spherical quadrilaterals AxgBx1, Ar1Bxrs and AxoBxs into which the
gray geodesics cut S. It follows from Proposition 2.3 (v) for 4,7 € {1, 2, 3} that the angles
of Az;Bx; at x; and x; are equal. This implies that 91,72, 93 satisfy the triangle inequality
strictly.

(ii, iii) In a similar way one treats the cases when I'(S) is an eight graph or an eyeglasses
graph, the corresponding two pictures are shown in Figure 2.

(iv) This is clear from the way I'(S) is embedded in S, see Figure 2. In particular, if I'(S)
is an eyeglasses graph, d(A,x1) = d(A,x3) < d(A, z2) and d(B,z2) = d(B,x3) < d(B,z1). O

2.2 The circumcenters of balanced triangles

It is well-known that the circumcenter of a Euclidean triangle A is contained in A if and only A
is not obtuse. Moreover, in the case when A is right-angled, the circumcenter is the mid-point
of the hypotenuse. It is also a classical fact that the circumcenter of a Euclidean triangle is the

point of intersection of the axes? of its sides. The next theorem is a generalisation of the above

4The azis of a segment is the perpendicular through the midpoint of such segment.
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statements to spherical triangles. By an involutive triangle we mean a triangle that admits an

anti-conformal isometric involution that fixes one vertex and exchanges the other two’.

Theorem 2.9 (Circumcenters of balanced triangles). Let A be a spherical triangle with vertices
x1, T, T3.
(i) The triangle A contains a point O equidistant from x1, x2, x3 if and only if A is balanced.
(i) The point O (equidistant from x1, x3, x3) is in the interior of A if and only if A is strictly
balanced. The point O is the midpoint of a side of A if an only if A is semi-balanced.
(iii) If A is strictly balanced, then the geodesic segments Ox1,Oxo, Oxs cut A into three invo-
lutive triangles.
(iv) Suppose that A is semi-balanced and the angle Zx; = w0; is the largest one. Then O is

the midpoint of the side opposite to x;, and x;O cuts A into two involutive triangles.
To prove this theorem we need the following lemma.

Lemma 2.10 (Some isosceles triangles are involutive triangles). Let A be a spherical triangle
with vertices qi, q2, g3 and denote by |q;q;| the length of the side g;qj. Suppose that |qiga| =
lg1g3| < 7 and Zq1 < 2m. Then there is an isometric reflection T of A that fizes g1 and exchanges
g2 with q3. In particular Zqo = Zq3. Moreover, T pointwise fizes a geodesic segment that joins

q1 with the midpoint of gaqs and splits A into two isometric triangles. Furthermore, |qaqs| < 2.

Proof. Consider first the case when Z/g; = . In this case A can be isometrically identified with
a digon so that ¢; is identified with the midpoint of one of its sides. Since each digon has an
isometric reflection fixing the midpoints of both sides, the lemma holds.

From now on we assume that Zq; # . Consider the unique spherical triangle A’ C S? with
vertices ¢, g5, ¢5 such that |¢1¢5| = |¢1d5] = lq1q2], £Z4) = Zq1, and Area(A’) < 27. We will
show that A’ admits an isometric embedding into A that sends ¢, to ¢;. This will prove the
lemma since this implies that A is isometric to a triangle obtained by gluing a digon to the side
¢5q5 of A’. And such a triangle clearly has an isometric reflection 7. This will also prove that
lg2q3| < 27, since |ghqh| < 27 and either |gags| = |ghgs| or |gags| + |ghgh| = 27.

To prove the existence of the embedding, denote by ¢ : A — S? the developing map of
triangle A. We may assume that ¢(¢;) = ¢}, t(q1q2) = ¢\ d5, and (q1q3) = ¢}q5. Note that ¢
sends g2g3 to the unique® geodesic circle that contains ¢(g2) and ¢(g3). Hence, it is not hard to
see that the preimages of A’ in A form a union of some number of isometric copies of A’. One

of them, that contains sides q1g» and q1g3 of A, is the embedding we are looking for. O

Remark 2.11. We note that this lemma is sharp in the sense that none of the two conditions

lq1q2| = |q1g3] < ™ and Zg1 < 27 can be dropped.

5Note that every Euclidean or hyperbolic isosceles triangle admits an isometric involution exchanging the equal
sides. This is not the case for spherical triangles, for example the triangle with angles 57/2,137/2,97/2 is equilateral

but clearly has no symmetries.
6This circle is unique since Zq; # 7, and also it intersects the segments ¢} g5, ¢} ¢4 only at the points g5, gj.
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Proof of Theorem 2.9. (i) Let S(A) be the sphere obtained by doubling A across its boundary,
i.e., by gluing A with the triangle A’ that is anti-conformally isometric to A. Then by Remark
2.6 the graph I'(S(A)) is the union of I'(A) with T'(A').

Suppose first that A contains a point O equidistant from all z;’s. Then, since the restriction
of Vg(a) to A equals Va, we see that O is equidistant from z; on S as well. So by Proposition
2.3 (iii) the point O corresponds to a vertex of I'(S(A)) of multiplicity at least 3. Furthermore,
by Lemma 2.8 (iv) we conclude that I'(.S) is either a trefoil or an eight graph. Hence again by
Lemma 2.8 the triangle A is balanced.

Suppose now that A is balanced, i.e., ¥y, ¥, ¥3 satisfy the triangle inequality. Then by
Lemma 2.8 (i), (ii) the graph I'(S(A)) is a trefoil or a eight graph, and so by Lemma 2.8 (iv)
there is a point O in S equidistant from all x;. It follows that A contains such a point as well.

(ii) We first prove the “only if” direction. Suppose that O is in the interior of A. Then
I'(S(A)) has two vertices of valence 3. So according to (i), I'(S(A)) is a trefoil. Hence, A is
strictly balanced by Lemma 2.8 (i).

Suppose that O is on the boundary of A. Without loss of generality assume that O is on
the side of A opposite to 1. For i = 1,2, 3 let ; be the geodesic segment of length VA (O) that
joins O with z;. Let ~/ be the image of v; in A’ C S(A) under the anti-conformal involution.
Since the multiplicity of O in I'(S) is at most 4 we conclude that 5 = +4, v3 = 74. Hence, O is
the midpoint of the side xox3.

To prove the “if” direction one needs to apply Lemma 2.8 (iv). Indeed, if A is strictly
balanced, I'(S(A)) has two vertices of multiplicity 3 and one of them lies in A. If A is semi-
balanced, I'(S(A)) has one vertex and it has to lie on the boundary of A.

A7 LN,

Al

Figure 3: Voronoi graphs of balanced triangles

(iii) Since A is strictly balanced, by (ii) there is a point O in the interior of A equidistant
from points x1, e, r3. Since VA(O) < m, we have |Oz1| = |Ox1| = |Ox3| < 7. Hence all three
isosceles triangles x;0x; are involutive triangles by Lemma 2.10.

(iv) This proof is identical to the proof of (iii) and we omit it. O

Remark 2.12. Theorem 2.9 can be used to construct the Voronoi graph I'(A) of a balanced

triangle A with vertices x1, xo2, x3. Indeed, according to this theorem, the geodesic segments
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Oz; cut A into three or two involutive triangles, and using a variation of Lemma 2.7 one can

show that I'(A) is the union of symmetry axes of these triangles. See Figure 3.

We will see that some results we are interested in about balanced triangles indeed concern

the following class of triangles.

Definition 2.13 (Short-sided triangles). A spherical triangle short-sided if all its sides have

length I; < 27. In this case, we set l; := min(l;, 27 — [;).
Theorem 2.9 has the following two simple corollaries.

Corollary 2.14 (Balanced triangles are short-sided). Let A be a balanced triangle with vertices

x1, T2, 3. Then A is short-sided, i.e. |x;x;| < 27.

Proof. Let us treat the case when A is strictly balanced. The semi-balanced case is similar. By
Theorem 2.9 (iii) the triangle A can be cut into 3 involutive triangles z;0x; where ZO < 27
and |Oz;| = |Ox;| < 7. Applying Lemma 2.10 to the triangle z;0x; we conclude that |z;z;| <
2. O

Corollary 2.15 (Short geodesic in a balanced triangle). Let A be a balanced triangle with
vertices x1, T2, x3. Suppose that {i,j,k} = {1,2,3} and such that the value l, = min(|z;x;|, 27 —
|zix;]) is minimal. Then there is a geodesic segment ya in A that joins x; with x; and such

that £(ya) = I, < 27/3, which in fact realizes the minimum distance between distinct vertices.

Proof. Let us again treat the case when A is strictly balanced. Let z;0x; be three involutive
triangles in which A is cut. Consider the developing map ¢ : A — S?. Then for each {i, j, k} =
{1,2,3} the value I, is equal to the distance between t(z;) and ¢(z;) on S?, and so d(z;,z;) >
d(u(zi),t(z;)) = l. For this reason, it is not hard to see, that the minimum of the value I, is
attained for the triangle x;Ox; for which the angle at O is the minimal one. In particular in
such a triangle the angle at O is at most 27 /3. It follows that there is a geodesic segment ya in
such a triangle z;0x; of length less than 27/3 that joins x; and x;. Since it cuts out of z;0x;

a digon with one side x;x; we conclude that ¢(ya) = Iy = d(z;, x;). O

2.3 Isometric conformal involutions on tori

In this short section we prove the following useful proposition.

Lemma 2.16 (Invariance of projective structures on one-pointed tori). Let (T,z) be a flat
one-pointed torus and let o be its unique nontrivial conformal involution. Then every projective
structure on T whose Schwarzian derivative has at worst a double pole at x is invariant under

g.

Proof. We represent our torus 7" as C/A where A is a lattice in C, and suppose that = corresponds

to the lattice points. We also endow 1" with the corresponding projective structure.
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The involution o pulls back to the map z — —z on T = C. The Schwarzian derivative
(see, for example [8]) of a projective structure is a quadratic differential on the torus 7. By
hypothesis, it has at worst a double pole at x. The vector space of such quadratic differentials
is 2-dimensional, generated by the constants and the Weierstrass elliptic function. Hence, all its
elements are invariant under the involution o, and so are all solutions of the associated Schwarz

equations. As a consequence, all such projective structures are o-invariant. ]

Proposition 2.17 (Spherical metrics and conformal involution). Let o be the unique conformal
involution of a spherical torus T that fizes the unique conical point x.
(i) If ¥ ¢ 27+ 1, then o is an isometry.
(ii) If 9 € 27 + 1, then each projective equivalence class of spherical metrics is parametrized
by a copy of R, on which o acts as an orientation-reversing diffeomorphism. Thus, o is

an isometry for a unique spherical metric in its projective equivalence class.

Proof. Consider the projective structure associated to a spherical metric on (T, z). By Lemma
2.16, such projective structure is o-invariant.

(i) Every spherical metric is non-coaxial by Lemma A.2, and so in each projective equivalence
class there is at most one spherical metric. Hence, such metric must be invariant under o.

(ii) Fix a spherical metric h in MSy1(2m + 1). Let T be the universal cover of 7" and let
T be its completion: denote by Z; the points in oT =T \ ’}, which project to x € T. Pick a
developing map ¢ for h, which in fact extends to 7': TS CP!, and let p be the associated
monodromy representation.

By Lemma A.2, the monodromy p is coaxial but non-trivial. Fix an element « of 71 (7T) such
that p(a) = eX # I with X € suy. Up to conjugation, we can assume that oo € CP! is the
attracting point and 0 € CP! is the repelling point for p(a)’ := €'*. The orbits of the group
(e'*) on CP' \ {0,00} will be called “parallels” and the unique geodetic orbit will be called
“equator”.

First, we claim that 7(#;) # 0,00 for all z; € OT and they all sit on the same parallel.
In fact, the holomorphic vector field z% on CP! is invariant for the monodromy, and so its
pull-back descends to a non-zero holomorphic vector field V on T, possibly with a pole in z. If
2(z;) € {0,00}, then V would have a zero at z, against x(7') = 0. The second assertion is clear,
since 7(8T) is an orbit for the action of the monodromy.

Second, note that all spherical metrics (h)ier projectively equivalent to h have developing
maps e’, and monodromy representation p. Thus, up to replacing h by some hy,, we can assume
that 2(8T) is contained inside the equator.

The function d : CP! — [0, 1] that measures the distance from the repelling point of p(«)’
is invariant for the monodromy action, and so its pull-back via ¢; to T descends to a function
dy : T — [0, 7]. We observe that ¢ can be recovered from d;(z) via €' = tan(d;(z)/2).

Now, (poo)(a) = p(a)!

monodromy representation p o o, the attracting point of (poo)(«)’ is 0 and the repelling point

= ¢~X. Thus, when considering the developing map (e’t) o o with
is 0o. It follows that the distance of (¢!7) oo (z) = e'7(x) from the repelling point oo is 7w — dy(z).
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Hence, (e¢'4) o o is a developing map for h_;. It follows that o acts on the family of metrics
(ht)ter by sending h; to h_¢, and so fixing the unique metric hg, whose developing map sends

oT to the equator. It follows that o acts on (T, z, h;) as an isometry if and only if ¢ = 0. O

Proposition 2.17(ii) was also proved in [2, Theorem 5.2]. See also [12, Theorem 1].

2.4 Proof of Theorem B

The goal of this section is to prove Theorem B and to make preparations for the proof of
Theorem C. Throughout the whole section we will mainly consider the class of tori that have
a conformal isometric involution. By Proposition 2.17 we know that such an involution exists
automatically in the case when the conical angle is not 2w (2m +1). We start with the following

simple lemma.

Lemma 2.18 (Points of I' fixed by a conformal isometric involution). Let S be a spherical
surface with conical points x that admits an isometric conformal involution o. Let p be a point
in S = S\ x fited by . Then p belongs to T'(S), its multiplicity p is even, and there exist
ezactly % geodesic segments or loops’ of lengths 2Vs(p) < 27 based at & and passing through

p. The point p cuts each such geodesic segment into two halves of equal length.

Proof. Consider any geodesic segment v of length Vg(p) that joins p with one of the conical
points. Since o () # v we see that p belongs to I'(S). If p is not a vertex of I'(S) then ~ and
o(7y) are the only two geodesic segments of length Vs(p) that join p with . Clearly, since o is
a conformal involution the union v U o () is a geodesic segment or loop based at x. Its length
is less than 27 by Proposition 2.3 (i).

The case when p is a vertex of I'(S) is similar. Since o is a conformal involution and it sends
I'(S) to I'(S) we see that the valence of p in I'g is even. By Proposition 2.3 (iii) the number
p of geodesic segments of length Vs(p) that join p with « is equal to this valence. Clearly,
altogether these u, segments form % geodesic segments (or loops) of length 2Vg(p) for all of
which p is midpoint. O

Now, we concentrate on the case of spherical tori with one conical point. It will be convenient

for us to recall first the construction of hexagonal and square flat tori.

Example 2.19 (Flat hexagonal and square tori). Let Ty and T, be the flat tori obtained by
identifying opposite sides of a regular flat hexagon and a square correspondingly. Denote by
I'¢ C Ty and I'y C Ty the graphs formed by the images of polygons boundaries. Then it is easy
to check that I's and I'y are Voronoi graphs in Tg and T4 with respect to the images of the

centres of the polygons.

Lemma 2.20 (Voronoi graph of a spherical torus). Let T' be a spherical torus with one conical

point and let T be its Voronoi graph. Then U is either a trefoil or an eight graph. In the first

"We always assume that a geodesic loop or segment can intersect & only at its endpoints.
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case the pair (T, T") is homeomorphic to the pair (Tg,'s). In the second case it is homeomorphic
to the pair (Ty,T'4).

Proof. By [24, Corollary 4.7] the Voronoi graph I' has at most three edges and two vertices.
Since the complement to the Voronoi graph is a disk, the graph has at least two edges.

Suppose first that I" has three edges. By [24, Corollary 4.7] the vertices of I have multiplicity
at least 3, so I is a trivalent graph with two vertices, i.e., a trefoil or an eyeglasses graph. Note
that the punctured torus 7" is homeomorphic to a thickening Th(T') of ', and such Th(T) is
uniquely determined by choosing a cyclic ordering of the half-edges incident at each vertex of I'.
Now, up to isomorphism such cyclic ordering is unique for the eyeglass graph, and its thickening
is homeomorphic to a three-punctured sphere. Hence I' must be a trefoil.

It is easy to see that Th(I') can be endowed with a metric so that, if we cut along T', we
obtain a flat regular hexagon with its center removed. If ﬁl(l—‘) is the completion of Th(T")
obtained by adding one point, then (7g,Ts) is homeomorphic to (ﬂl(F), I'), which in turn is
homeomorphic to (7,T).

The case when I' has two edges is similar. O

The following is the main proposition on which the proof of Theorem B relies.

Proposition 2.21 (From tori to balanced triangles). Let (T,x) be a spherical torus with one
conical point  and suppose that T has a non-trivial isometric conformal involution o. Let T'(T)
be the Voronoi graph of T.

(i) Suppose T'(T) is a trefoil. Then o permutes the two vertices of T'(T), and fizes the mid-
points p1,p2, p3 of the three edges of T'(T). Moreover, there exist exactly three o-invariant
simple geodesic loops v1,7v2,73 based at x such that ~; intersects T'(T) orthogonally at
pi. These geodesic loops cut the torus into the union of two congruent strictly balanced
triangles that are exchanged by o.

(ii) Suppose T'(T) is an eight graph with the vertex A. Then o fizes the vertex and the mid-
points p1, p2 of the two edges of T'(T'). Moreover there exist four o-invariant simple geodesic
loops Y1,7v2, M, M2 based at x and uniquely characterised by the following properties. Fach
geodesic ~y; intersects I'(T) orthogonally at p;. Each geodesic n; passes through A and has
length 2d(A,x). Moreover, for i = 1,2 the triple of loops v1,7v2,m; cuts T into the union
of two congruent semi-balanced triangles that are exchanged by o.

(iii) T has a rectangular involution if and only if its Voronoi graph is an eight graph. For a
torus T with a rectangular involution the triangles in which ~v1,v2,m cut T are reflections

of the triangles in which vy1,7v2,m2 cut T.

Proof. (i) Since o is an isometry of T it sends I'(T’) to itself. Let’s denote the vertices of I'(T") by
A and B. Since their valence is 3 and ¢ is a conformal isometric involution, ¢ can fix neither A
nor B. Indeed, begin o of order 2, if o fixed A, then it would fix at least one half-edge outgoing
from A, and so it would be the identity. Hence o permutes A and B, which implies in particular

that A and B are at the same distance from z.
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Next, since o is an orientation preserving involution, and I'(T") is a trefoil, from simple
topological considerations it follows that o sends each edge «; of I'(T) into itself. It follows that
the midpoints of the edges p1, p2, p3 are fixed by o.

Figure 4: Trefoil case

Let us now cut T along I'(T) and consider the completion D of the obtained open disk.
Clearly, D is a spherical hexagon with the conical point  in its interior. Moreover, o induces
an isometric involution on D without fixed points on D. It follows that o sends each vertex
of D to the opposite one.

Next, let’s denote the vertices of D by Ay, Ba, A3, Bi, A, B as is shown in Figure 4. Here
all the points A; correspond to A and B; to B when we assemble T' back from the disk. In a
similar way we mark midpoints of the sides of D by p} and p!.

According to Lemma 2.18, for each i there is a geodesic loop ~; of length 2d(p;, ) based at
x for which p; is the midpoint. Let us show that ~1,v2,v3 cut T into two equal strictly balanced
triangles whose vertices are identified to the point z.

Indeed, the first triangle, which we will call A4, is assembled from three quadrilaterals
Aphxpl, Aspllaph, Asphzp). The second triangle Ap is assembled from the remaining three
quadrilaterals. Clearly, (A 4) = Ap, so these two triangles are congruent.

Finally, A 4 is strictly balanced according to Theorem 2.9 (i), indeed the point A lies in the
interior of A4 and is at distance d(A,x) from all the vertices of Ay4.

(ii) Let us now consider the case when I'(T) is an eight graph with a vertex labelled by A.
Clearly, A is fixed by o since this is the unique point of I'(7T") of valence 4.
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Figure 5: Eight graph case

As before we see that the midpoints pi, ps of the two edges of I'(T") are fixed by o and this
gives us two o-invariant geodesic loops 71 and 3. To construct n; and 72 we apply Lemma 2.18
to the point A.

Now let us cut 7T along the Voronoi graph I'(T) and consider the completion D of the
obtained open disk. Clearly, this disk is a quadrilateral with one conical point in the interior.
Let us mark the vertices of this quadrilateral and the midpoints of its edges as it is shown in
Figure 5.

As before, the loops 7v1,72,m1 cut T into two congruent triangles exchanged by o. To show
that these triangles are semi-balanced consider one of these triangles obtained as a union of two
triangles Ajzply, Asxp] and the quadrilateral xp)Asph. To assemble this triangle one has to
identify the pairs of sides (A;1pf, Aop)y) and (Azp), Asp!). The resulting triangle is semi-balanced
by Theorem 2.9 (ii).

(iii) Suppose first that I'(T") is an eight graph. Then we are in the setting of the case 2 of
this proposition. Let us construct an involution 71 of D that fixes pointwise v;. We define 7 so
that 71(Ay) = As, 71(A3) = Ay. Then in order show that 7 extends to D it is enough to show
that the triangle Ajx A, is isometric to Asx A3 and that the geodesic 7 is the axis of symmetry
of both triangles AjzAy and AszA,. The former statement follows from Proposition 2.3 (v).
To prove the latter statement, note again that AjxAs is isometric to A4x A3 by Proposition 2.3
(v) and then compose this isometry with o. This induces desired reflections on both triangles
A1xAs and AgxAs. The involution 7o fixing 79 is constructed in the same way.

Suppose now that 7" has a rectangular involution 7. Let us show that I'(T') is an eight graph.
Since 7 is a rectangular involution, its fixed locus is a union of two disjoint geodesic loops. One
of these loops passes through z while the other one, say &, is a simple smooth closed geodesic.

For any point p € £ there exist at least two length minimizing geodesic segments that join it
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with z (they are exchanged by 7). It follows that & lies in I'(7"). And since a trefoil graph can’t

contain a smooth simple closed geodesic, we conclude that I'(T) is an eight graph. O

Later we will need the following statement, which is a part of the proof of Proposition 2.21.

Remark 2.22. Suppose we are in the case (ii) of Proposition 2.21. Consider the four sectors in
which geodesic loops 71 and 7y cut a neighbourhood of x. Then for each i = 1, 2 the geodesic

loop ~; bisects two of these sectors.
The final preparatory proposition of this subsection is the converse to Proposition 2.21.

Proposition 2.23 (From balanced triangles to tori). Let A be a balanced triangle and let A’
be a triangle congruent to it. Let T(A) be the torus obtained by identifying the sides of A and
A’ through orientation-reversing isometries.

(i) The Voronoi graph T'(T'(A)) coincides with the union in T(A) of T(A) and T'(A').

(ii) If A is strictly balanced then the Voronoi graph I'(T'(A)) has two vertices. Moreover, the
images of the three sides of A in T'(A) coincide with three canonical geodesic loops 1,72, Y3
on T(A) constructed in Proposition 2.21 (i).

(iii) If A is semi-balanced then T'(T(A)) has one vertex. Moreover the images of the three sides
of A in T(A) coincide with three canonical geodesic loops v1,7v2,m; on T(A) constructed
in Proposition 2.21 2). Here the side of A opposite to the largest angle of A corresponds
to n;.

/ !
p3 Ty

Al p3

Y A%

Figure 6: Two isomorphic triangles A and A’

Proof. (i) Assume first that A is strictly balanced. Let I be the graph obtained as the union
I'(A)UT(A'). In order to prove that I' = T(T(A)), it is enough to show that T' satisfies the
properties (a) and (b) of Lemma 2.7.

Recall that by Theorem 2.9 (ii) there is a point O in the interior of A that is equidistant
from points z;. Denote by p; and p} the midpoints of sides opposite to x; and z as in Figure 6.
Then by Remark 2.12, T'(A) is the union of the segments Op; and I'(A’) is the union of the
segments Op). It follows that T(A) \ T' is a convex and star-shape with respect to x, which
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means that property (a) of Lemma 2.7 holds. As for property (b), it holds since I'(A) and T'(A')
are Vornoi graphs of A and A’.

The case when A is semi-balanced case is treated in the same way, so we omit it.

(ii) Since A is strictly balanced, it follows from (i) that I'(7°(A)) has two vertices. Now, it
follows from (i) that for any permutation {i, j, k} the side z;x; C T(A) intersects an edge of
I['(T(A)) at its midpoint and it is orthogonal to it at this point. Hence, by Proposition 2.21 (ii)
each geodesic z;x; coincides with the geodesic loop 7.

(iii) The proof of this result is similar the case (ii) and we omit it. O

Remark 2.24. We note that the statement of Proposition 2.23 does not hold for any unbalanced
triangle. Indeed, if A is unbalanced one can still construct a torus T'(A) from A and its copy
of A’. However, the union of the Voronoi graphs of A and A’ will be an eyeglasses graph in

T(A). Such a graph can never be the Voronoi graph of a torus with one conical point.

Now we are ready to prove Theorem B.

Proof of Theorem B. Let T be a spherical torus with one conical point of angle 27 with ¢ ¢
27 + 1. According to Proposition 2.17, there exists a conformal isometric involution ¢ on T.
Hence we can apply Proposition 2.21. In particular, by Proposition 2.21 (iii) the torus T has a
rectangular involution if and only if I'(T') is an eight graph.

(i) The Voronoi graph I'(T) of T is a trefoil and we get a collection of three geodesics 1, v2, 73
that cut 7" into two congruent strictly balanced triangles. Such a collection of geodesics is unique
on T' by Proposition 2.23.

(ii) The Voronoi graph I'(T) is an eight graph, and by Proposition 2.21 we get two triples
of geodesics 1, 72,11 and v1,y2,n2 both cutting 7" into two congruent semi-balanced triangles.
Again, it follows from Proposition 2.23 that these two triples are the only ones that cut 7" into

two isometric balanced triangle, and they are exchanged by the rectangular involution. O

3 Balanced spherical triangles

The main goal of this section is to describe the space of balanced spherical triangles with assigned
area. To do this, we recall in Section 3.1 several theorems describing the inequalities satisfied by
the angles of spherical triangles. We also give explicit constructions of such triangles. Section
3.2 is mainly expository. It recalls the results from [13] that the space MT of all (unoriented)
spherical triangles has a structure of a three-dimensional real-analytic manifold. From this
we deduce that the space of balanced triangles of a fixed non-even area is a smooth bordered
surface. In Section 3.3 we describe a natural cell decomposition of the space MT pq(9) of all
balanced triangles of fixed area m(¥ — 1) with ¥ ¢ 2Z + 1.
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3.1 The shape of spherical triangles

We start this section by recalling the classifications [10] of spherical triangles. In fact, such
triangles are in one-to-one correspondence with spheres with a spherical metric with three
conical points, provided we exclude spheres and triangles with all integral angles. Indeed, for
each S? with a spherical metric and three conical points, that are not all integral, there is a
unique isometric anti-conformal involution 7, such that S?/7 is a spherical triangle. Conversely,
for each spherical triangle A we can take the sphere S(A) glued from two copies of it.

It will be useful to introduce the following notation.

Notation. We denote by ng the subset of Z3 consisting of triples (n1,ng, n3) with ny + ng +ns
even. By d; we denote the ¢; distance in R? defined by d; (v, w) = > lvi —w;|. If a spherical
triangle has angles 7 - (91, 92, 93), then we call (91,2, 93) € R? its associated angle vector.

V)
’ (1,2,2) Y9

n i > (2.2,1)

(0,0,1)

(2,1,0)
)

(0,0,0) (1,0,0)

Figure 7: Angle vectors of spherical triangles

We collect the results into three subsections, depending on the number of integral angles,

and we remind that there cannot be a triangle with exactly two integral angles.

3.1.1 Triangle with no integral angle

The first result we want to recall from [10] is the following.

Theorem 3.1 (Triangles with non-integral angles [10]). Suppose 1,192,793 are positive and
none of them is integer. A spherical triangle with angles 7 - (91,02,93) exists if and only if

dl((ﬂl,’ﬁz,’ﬂg),zg) > 1. (3)
Moreover such a triangle is unique when it exists.

The unique triangle with three non-integral angles 7 (1, 92, ¥3) will be denoted by A(d1, 92, U3).
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Remark 3.2. Let us decipher Inequality (3). Note first, that the subset d((91, J2,93),Z3) <
1 C R? is a union of octahedra of diameter 2 centred at points of Z2. The complement to this set
is a disjoint union of open tetrahedra. Each such tetrahedron is contained in a unit cube with
integer vertices. This collection of tetrahedra is invariant under translations of R? by elements
of Z3. Theorem 3.1 states that if a point (J1,72,93) € R?;O lies in one of such tetrahedra, the
corresponding spherical triangle exists and it is unique. Figure 7 depicts the union of six such

tetrahedra in the octant ]R?;O.

An explicit construction of balanced spherical triangles can be found in [23, Section 3.1.2].

In fact, it was already used by Klein [18].

3.1.2 Triangles with one integral angle
The second result we wish to recall from [10] is the following.

Theorem 3.3 (Triangles with one integral angle [10]). If ¢ is an integer and J2, 93 are not
integers, then a spherical triangle with angles - (V1,V2,V3) exists if and only if at least one of
the following conditions is satisfied.
(a) |92 — 3] is an integer n of opposite parity from Y1 and n = |¥s — V3| < ¥ — 1.
(b) 92 + U3 is an integer n of opposite parity from 91 and n = 99 + 93 < 91 — 1.
Moreover, when ¥; satisfy (a) or (b), there is a one-parameter family of triangles with angles

7+ (01,92,93) and this family is parametrised by the length |x1z2| (or |x123]).
It is obvious that triangles satisfying the hypotheses of Theorem 3.3 (b) are never balanced.

Remark 3.4. It is easy to see that in the case when a triple (11, ¥2,%3) of positive numbers
satisfies the triangle inequality and the integrality constraints of Theorem 3.3 (a), there are
integers ni,n2,n3 > 0 and a number 6 € (0,1) such that ¥; =na +ng+ 1, Y2 =ny +nz + 0,
Y3 =nq1 +mno +0.

Finally, we present a full description of balanced triangles with exactly one integral angle.

Proposition 3.5 (Balanced triangles with one integral angle). Let A be a balanced spherical
triangle with vertices x1, xa, T3 and angles 7 - (¥1,02,93), where 91 is an integer while V9, U3
are not integers. Let ni, na, n3, 8 be as in Remark 3.4. Then the following holds.

(i) |xoxs| = 7.

(i) There exists a unique pair of geodesic segments y12,v13 C A with |y12|+ |y13| = 7, that cut
A into the following three domains. The first is a digon with angles wng bounded by the
sides x1xo and y13. The second is a digon with angles mng bounded by the sides x1x3 and
v13. The third is a triangle with sides vi2, Y13 and xoxs, and angles (0 + n1,0 + ny, 1)
opposite to the sides.

(i1i) All balanced triangles with angles w(91,72,93) are parametrised by the interval (0, ) where
one can choose as a parameter either |r1xa| or 2m — |z1x2|, depending on whether ns is

even or odd.
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Proof. (i) Since A is balanced, by Corollary 2.14 we have |zix2|, |x2x3], |z321| < 27. Consider
the developing map ¢ : A — S2. Since ¥; is integer, the images t(x122), ¢(z173) belong to one
great circle C in S?. At the same time, since the angle 9 is non-integer, the image ¢(z223) does
not belong to C. This means that +(z2) and ¢(x3) are opposite points on S? and so |rax3| = 7.

(ii) Since |zox3| = m by part (i), there exists a maximal digon embedded in A, with one
edge equal to xox3. The other edge of such digon must pass through z; by maximality, and so
it is the concatenation of two geodesics 12 from x1 to xo and 13 from z1 to x3, that form an
angle m at x1. It is easy to see that these are the geodesics we are looking for. The uniqueness
of 12,713 follows, because n; and 6 are uniquely determined.

(iii) follows from part (ii). O
The next lemma is a partial converse to Proposition 3.5 (i).

Lemma 3.6 (Balanced triangles with one edge of length 7). Let A be a balanced spherical
triangle with vertices x1, x2, T3 and angles w(¥1,V2,U3). Suppose that |zoxs| = w. Then ¥y is

integer.

Proof. Consider the developing map ¢ : A — S?. Since |z;x;| < 27 by Corollary 2.14, we see
that «(x;) # ¢(x;) for i # j. In order to show that ¥, is integer it is enough to prove that both
images ((z122) and ¢(x123) lie on the same great circle. But this is clear, since the points ¢(xz2)

and ¢(z3) are opposite on S?, while «(z1) is different from both points. O

Last lemma concerns semi-balanced triangles.

Lemma 3.7 (Semibalanced triangles with one integral angle). Suppose A is a semi-balanced
triangle with angles 7(¥1, Y2, 93).
(i) If ¥; is an integer, then U1 + U2 + 93 is an even integer 2m and ¥}, V), are half-integers.
(it) If 91 + U9 + U3 = 2m, then one V; is integer and the other two ¥;,9y, are half integer.

Proof. Without loss of generality, we can assume that ¥y = 99 4+ 3. So certainly 91 + J9 + J3
cannot be odd integral. It follows from [10, Theorem 2] that ¥, 92,3 cannot be three integers.
(i) Note that 99 cannot be an integer, because the relation ¥, — ¥3 = 2 would violate
Theorem 3.3 (a). Similarly, ¥3 cannot be an integer. Hence, ¢J; is an integer and so Theorem
3.3 (a) implies that 9,3 are half-integers.
(ii) Our hypotheses imply that ¥ = m is an integer. By (i) we obtain that 19,13 are
half-integers. O

3.1.3 Triangles with three integral angles

We begin by giving a description of all triangles with integral angles.

Proposition 3.8 (Triangles with three integral angles). For any spherical triangle A with

integral angles 7 - (m1, ma, mg) the following holds.
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(i) There ezists a unique triple (n1,n2, ng) of non-negative integers such that my = na+nz+1,
me =nsg+mn1+ 1, mg =ny+ns+ 1. Moreover, there exist a unique triple of geodesic
segments Y12,723, 713 C A with |y12| + |v23] + |113| = 27, that join points x; and cut A
into the following four domains:

— the central disk Ag isometric to a half-sphere and bounded by segments V12, Y23, Y13;
— digons By, Bo, B3 where each B; is bounded by segments v, and x;xy and has angles
TN, .

(i) The space of triangles with angles - (ny,ne,n3) can be identified with the set of triples of
positive numbers li2, 113,23 satisfying lig + log + l13 = 2w (where l;; are interpreted as the
lengths of the sides of Ag).

(iii) All sides of A are shorter than 2mw. Moreover, there is at most one side of length .

Proof. (i) Consider the developing map: + : A — S?. Since all the angles of A are integral,
all its sides are sent to one great circle on S?. The full preimages of this circle cuts A into a
collection of hemispheres. It is easy to see that only one of these hemisphere contains all three
conical points, this is the disk Ag in A. The conical points cut the boundary of the disk into
three geodesic segments v12,723,713- The complement to Ay in A is the union of the three
digons Bi, Bs, Bs.

(ii) It is clear from (i) that A is uniquely defined by the three lengths l;; = |v;;| and
ni, ng2, n3. Conversely, for each positive triple l;; with l13 + I3 + [13 = 27, and each integer
triple ni, ng, n3, one constructs a unique spherical triangle.

(iii) Since |y12|+|y23|+|v31| = 27, then all v;; are shorter than 27. If ny = 0, then z;x; = ;5.
If ny > 0, then z;z; bounds a digon By with angles 7n;. In both cases, z;x; has length |7
(if ny, is even) or 27 — |v45| (if ng is odd). Thus, |z;2;] < 2w. Moreover, suppose that one of
the sides z;z;, say xox3, has length . It follows that |y23| = 7 and so |yi2|, |[y13| < 7. As a

consequence, x1x2 and xixs have length different from 7. O

Remark 3.9 (Existence of balanced triangles with integral angles). If (my,mg, m3) is a triple of
positive integers that satisfies the triangle inequality, then there exist n1, no, ng > 0 integers such
that m; = 1+ n; + ny for {i,j,k} = {1,2,3}. Then the construction described in Proposition

3.8 (i) shows that there exists a balanced spherical triangle with angles 7(my, mg, ms).
We thus obtain a characterisation of such triangles (see also [10] and [13]).

Corollary 3.10 (Balanced triangles of area 2mm). Let A be a triangle.
(i) If A has integral angles 7 - (mq, ma, mg), then A is strictly balanced and it has area 2mm
with m = %(ml +mg+m3—1) € Z.
(i1) If A has area 2mm for some integer m > 0 and it is balanced, then A has integral angles

- (m1,ma,m3), with my +mae +ms =2m + 1.

Proof. (i) By Proposition 3.8, the central disk Ay has angles m(1,1,1) and so it is strictly
balanced. Since A is obtained from Ag by gluing digons along its edges, A is strictly balanced.

The second claim is a consequence of [10, Theorem 2].
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(ii) Suppose that A has angles (1, 92,73). Since Area(A) = w(V1 + V2 + J3 — 1) we see
that ¥ + 02+ 193 = 2m+ 1. It follows easily that dy ((J1,92,93),Z3) = 1. Hence, from Theorem
3.1 we conclude that at least one of the 1;, say 91, is integer.

Assume by contradiction that %9 and 3 are not integer, and so we are in the setting of
Theorem 3.3. The possibility (b) can’t hold because A is balanced. Assume that possibility (a)
holds, in which case ¥ — 93 is an integer, and 91 4+ 19 — 93 is odd. But then, since 91 + 95 + V3
is also odd, we see that 93 is integer. This is a contradiction.

We conclude that all ¥;’s are integer. O

3.1.4 Final considerations

The last statement of the section can be derived in many ways. Here we obtain it as a conse-

quence of Theorem 3.1, Theorem 3.3 and Proposition 3.8.

Corollary 3.11 (Triangles are determined the side lengths and angles). Let A be a spherical
triangle with angles 7 - (¥1,92,93), and let l; be the length of the side opposite to the vertez x;.
Then A is uniquely determined by ¥;’s and l;’s.

Proof. If none of ¥; is integer, then A is uniquely determined by (1, J2,¥3) by Theorem 3.1.
If ¥ is integer, while 99 and 3 are not integer, then the triangle A is uniquely determined
by the angles ¥9J; and the length I3 by Theorem 3.3.
If ¥4, Yo Y3 are integer, then it follows from Proposition 3.8 that all triangles with angles ¥;
are uniquely determined by the lengths of their sides. O

3.2 The space of spherical triangles and its coordinates

Let us denote by MT be space of all (unoriented) spherical triangles with vertices labelled
by 1,2, x3, up to isometries that preserve the labelling. This space has a natural topology
induced by the Lipschitz distance (see Section 6). We will denote by 1, ¥2,9s, l1, l2, I3 the
functions on MT, defined by requiring that 7J;(A) is the angle of the spherical triangle A at
x; and [;(A) is the length of the side of A opposite to z;.

By Corollary 3.11 the map ¥ : M7 — RS, that associates to each triangle its angles and

side lengths, is one-to-one onto its image. Moreover, we have the following result.

Theorem 3.12. (Space of spherical triangles [13, Theorem 1.2]) Let MT be the space of
spherical triangles. The image ¥(MT) C RS is a smooth, connected, orientable real analytic

3-dimensional submanifold of RS.

This theorem says that the space M7 has a structure of a smooth, connected, analytic
manifold and moreover at each point A € MT one can choose three functions among ¥J; and
l; as local analytic coordinates. It also follows from Theorem 3.12 that formulas of spherical
trigonometry, that are usually stated for convex spherical triangles, hold for all spherical trian-

gles. In particular, for any permutation (4, 7, k) of (1,2,3) and any A € MT the cosine formula
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for lengths holds®:
cos I sin(md;) sin(mdy,) = cos(nd;) + cos(mdd;) cos(mdy). (4)

Lemma 3.13 (Some coordinates on the space MT). Consider the functions ¥1,92,93 on MT.
(i) The functions V1, 92,93 form global analytic coordinates on the (open dense) subset of MT
consisting of triangles with non-integral angles.
(ii) Suppose A € MT is short-sided and the angle sum ¥1(A) 4+ 92(A) + ¥3(A) is not an odd
integer. Then the function V1 + 92 + Y3 has non-zero differential at A.

Proof. (i) Consider the projection map from W(MT) to the angle space R®. According to

Theorem 3.1 this map is one-to-one over the subset of (91, Y2, 93) in Rio,

(3). We need to show that this projection is in fact a diffeomorphism over this set. However,

that satisfy Inequality

using the cosine formula (4) and the fact that none of ¥; is integer, we see that the lengths I;
depend analytically on the ¥;’s.

(ii) As mentioned just before Section 3.1.1, there cannot be a spherical triangle with exactly
two integral angles. Moreover, Proposition 3.8(i) implies that A cannot have three integral
angles, if ¥1(A) + 92(A) + 93(A) is not an odd integer. Thus A can have at most one integral
angle.

In case all ¥; are non-integer, the statement follows immediately from (i). Suppose finally
that exactly one of ¥;, say ¢, is integer. Then, since A is short-sided, using exactly the same
reasoning as in the proof of Proposition 3.5 (i), we deduce that [; = 7. Now, for any 6 > 0
we can glue to the side zoxs of A the digon with two sides of length 7 and the angles 6.
The family of triangles thus constructed, that depends on 6, determines a straight segment in
U(MT) starting from W(A) and the linear function ¥; + 92 + 3 restricted to this segment has

non-zero derivative. O

Definition 3.14 (Spaces of triangles with assigned area). For any ¢ > 1 we denote by M7 () C
MT the surface consisting of triangles with ¥; + ¥2 + 93 = 9. We denote by MT py () and
MT 4,(9) the subsets of balanced and short-sided triangles correspondingly.

The following statement is a corollary of Theorem 3.12 and Lemma 3.13.

Corollary 3.15 (Space of balanced triangles with assigned area). For any 9 > 1 the set
MT e (V) is a non-singular, real analytic, orientable bordered submanifold of the manifold MT
of all spherical triangles. The boundary of MT pq(9) consists of semi-balanced triangles.

Proof. Suppose first 91 + J2 + 93 = 2m + 1. Balanced spherical triangles of area 2mm are
classified in Lemma 3.10 and Proposition 3.8. They have integral angles and each connected
component forms an open Euclidean triangle in R6. Clearly such a subset of M7 C RS is a

smooth submanifold.

8Indeed, an analytic function vanishing on an open subset of an irreducible analytic variety vanishes identically.
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Assume now that ¢ = 1 + ¥J9 + Y3 is not an odd integer. Clearly, M7, is an open
subset of MT, and so we deduce from Lemma 3.13 (ii) that MT ¢, (9) is an open smooth 2-
dimensional submanifold of M7 . The set MT py(¥) is contained in MT 4, () and its boundary
is composed of semi-balanced triangles. We need to show that such triangles form a smooth
curve in M7 g, (19).

Let A € MTg,(9) be a semi-balanced triangle, say 91 = 95 + 5. If 91, 92, J3 are not
integer, from Lemma 3.13 (i) it follows immediately that the curve ¥J; — 99 — 93 = 0 is smooth
in a neighbourhood of A. Suppose that one of ¥J; is integer. Then we are in the setting of
Lemma 3.7. In particular by Lemma 3.7 (i) we have ¥; + J2 + 93 = 2m. But then, applying
Lemma 3.7 (ii) we see that all semi-balanced triangles in M7 p,;(2m) have one integral and two
half-integral angles. Such triangles are governed by Proposition 3.5 and their image under the
map ¥ forms a collection of straight segments in RS. It follows that semi-balanced triangles
form a smooth curve in M7 ¢, (2m).

Finally, let’s show that M T4 (1) is orientable. This is clear if ¥ is an odd integer, because
a disjoint union of open triangles is orientable. In case 1 is not an odd integer, it suffices to
show that M7 e (¥) can be co-oriented, since MT is orientable. A co-orientation can indeed be
chosen since the function ¥; + 92 + J3 = ¥ has non zero differential along the surface M7 pq;(19)
by Lemma 3.13 (ii). O

3.3 Balanced spherical triangles of fixed area

The goal of this section is to describe the topology of the moduli space M7 4q(1)) of balanced
triangles with marked vertices of fixed area m(¥ — 1), where ¢ > 1. To better visualize the

structure of such space, we introduce the following object.

Definition 3.16 (Angle carpet). Take ¢ > 1 such that ¥ ¢ 2Z + 1. The angle carpet, denoted
Crp(¥) is the subset of the plane II(9) := {(¥1,92,93) € R3 |91 + V2 + 3 = ¥} consisting of
points such that there exists a spherical triangle with angles 7(11, ¥2,13). Points in Crp(d) with
one integral coordinate are called nodes. The balanced angle carpet is the subset Crpy,;(¥) =
Crp(¢) N Bal(¢), where Bal(¥) = {(V1,72,93) | ¥; < ¥ +9Ii}. A node in Crpy,(¥) is internal if
it does not lie on 9Bal(?)).

Now we separately treat the cases ¥ not odd and ¥ odd.

3.3.1 Case ¥ not odd

Throughout the section, assume ¢ ¢ 27 + 1. We will denote by MT%al(ﬁ) its subset consisting
of triangles with at least one integral angle. By Proposition 3.5 this subset is a disjoint union of
smooth open intervals in M7 pq;(9). We will see that it cuts MT e () in a union of topological
disks. This decomposition is very well reflected in the structure of the associated balanced

carpet, as we will see below.
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(0,3.5,0)

(0,0,3.5) (3.5,0,0)

Figure 8: The angle carpet Crp(%), composed of 16 open triangles and 12 nodes. The

shaded area represents points in Bal(1}).

The carpet Crp(¢#) is composed of a disjoint union of open triangles with a subset of their
vertices (the nodes). In order to better visualize such carpets, we will often identify Crp(d)) with
its projection to the horizontal (1, J2)-plane. Figure 8 shows how the projection of Crp(3.5)
looks like: it is a union of 16 disjoint open triangles (singled out by Inequality (3) of Theorem
3.1) and a subset of 12 of nodes (governed by condition (a) of Theorem 3.3) marked as black

dots. Figure 9 depicts the projection of balanced angle carpets for five different values of 4.
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Figure 9: Balanced carpets for ¢ = 1.5, 2, 3.5, 6, 8.

The following lemma is a consequence of Theorems 3.1 and 3.3.

Lemma 3.17 (Description of the angle carpets). Take ¥ € (1,00)\{2Z+1} and set m = |25 ].
(i) The carpet Crp(¥9) is the union of 4m? open triangles with 3m? nodes (V1,02,93), such
that the unique integer coordinate ¥; of a node satisfies the inequality 9; > [0; — ;| +21+1
for some integer I < 0.
(i1) All points (¥1,02,93) € Bal(¥) with one positive integral coordinate are nodes in Crpyy (V).
Hence, the balanced carpet Crpy,;(9) is a connected set.
(11i) The balanced carpet Crpy, (V) intersects E open triangles and it contains N internal nodes,
where
m? if ¥ < 2m 3m(m—1)/2 if 9 <2m

E: B N:
m?+3m if 9 > 2m 3m(m+1)/2 if 9 > 2m.

Hence E— N = —m(m — 3)/2.
(iv) There exists a point in Crpyy (V) with non-integral coordinates at which 93 = 3.
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Proof. (i) Let us split the carpet into two subsets. The first subset consists of points such that
none of coordinates 9J; is integer, and the second subset is where one of coordinates ¥J; is integer.

Is is clear that the first subset is the union of open triangles given by intersecting the plane
Y1 + 92 + 93 = ¥ with the open tetrahedra that are given by Inequality (3) of Theorem 3.1.
Since such plane does not pass through any vertex of the tetrahedra for ¥ non-odd, it follows
that the number of triangle only depends on m and so we can compute it for 99 = 2m. Look at
the projection of Crp(2m) inside the (1, 92)-plane and enumerate the open triangles as follows:
to points of type (0,1 + 1/2) with [ € {0,1,...,2m — 1} we can associate a unique triangle, to
points of type (n,l+1/2) withn € {1,...,2m—1} and [ € {0,...,2m —n— 1} we can associate
two triangles. The number of such triangles is thus 4m?2.

The second subset is governed by Theorem 3.3. Since 1 + 199 +13 = 1 is not an odd integer,
only the nodes that satisfy condition (a) of Theorem 3.3 lie in Crp(##). Again it’s enough to count
the nodes for ¥ = 2m. Suppose first ¥; integer. We must have |209 + 91 — 2m| = |92 — V3| =
Y1 — 1 — 2[ for some integer [. If ¥; € {1,2,...,m}, then 9 € %—i— {m—11,...,m—1} and so
we have m(m + 1)/2 nodes. If 91 € {m+1,...,2m — 1}, then 95 € 3 +{0,...,2m — 1 — ¥y}
and so we have m(m — 1)/2 nodes. Thus, we have m? nodes with integral 91, and we conclude
that we have 3m? nodes in total.

(ii) Again, it is enough to consider the case ¥ = 2m. In the balanced carpet ¥; < m for all
i and so the first claim follows from the above enumeration of the nodes. Hence, Crpy,;(¥) is
connected.

(iii) Let us first consider N. For ¥ = 2m the enumeration in part (i) shows that N =
3m(m —1)/2. If ¥ < 2m, such N does not change. If ¥ > 2m, then N = 3m(m — 1)/2 4+ 3m,
such extra 3m is exactly the number of nodes sitting in dBal(2m).

As for E, the enumeration in (i) for ¥ = 2m shows that 4F = 4m? and so E = m?. For
¥ < 2m, the value of E does not change. For ¢ > 2m, there 3m extra triangles intersected by
Bal(¢), which is exactly the number of nodes sitting in dBal(2m).

(iv) The point ¥ = (¢ + 3)/4 and Y2 = ¥3 = m — 3(1 — ¢)/8 belongs to the interior of
Crpye (¥) and it is not a node. O

In order to understand the topology of M7, (¥) we consider the natural projection map
O : MTpa(9) — Crpy,(¥) that sends A to (91 (A), J2(A), 93(A)).

Analysis of the map O. By Proposition 3.17 the balanced carpet Crp,;(¥) consists of E
polygons {P;}, bounded by some semi-balanced edges that sit in 9Bal(¢) and some nodes. Note
that we are considering P, as closed subsets of Crp,,;(9): in fact, P, is not a closed subset of
the plane II(¢) as it misses the edges sitting on the lines ¢; = a + (¢ + 1)/2 with i € {1,2,3}
and a € {0,1,...,m — 1}: such edges will be called ideal edges. In Figure 10 the polygon P, on
the right has two nodes, one semi-balanced edge and three ideal edges. (Note that a node can

be semi-balanced too.)

33



semi-balanced edge semi-balanced edge

—~

P nodal B
strip x 7i alge
nodal o — @ )
edges P (_)

MT (9) Crp(?)

Figure 10: The map ©. Unmarked edges are ideal edges.

For each polygon P, the real blow-up ]31 of P, at its nodes is obtained from P; by replacing
each node by an open interval (nodal edge): the natural projection ﬁl — P, contracts each nodal
edge to the corresponding node. (Note that a nodal edge can be also semi-balanced.) For every
I we can fix a realization of ﬁl inside R? as the union of an open convex polygon with some of its
open edges (nodal edges and semi-balanced edges). Again, such 131 is not a closed subset of R?,
as it misses the edges corresponding to the ideal edges of F;: such missing edges will be referred
to as the ideal edges of 131 In Figure 10 the polygon ﬁl has two nodal edges, one semi-balanced
edge and three ideal edges.

We recall that MT e () is a surface by Corollary 3.15 and its boundary consists of semi-
balanced triangles, and that the map © contracts each open interval in MT%al(ﬂ) to a node by
Proposition 3.5 and it is a homeomorphism elsewhere by Lemma 3.13 (i).

It is casy then to sec that © (P, \ {nodes}) is homeomorphic to P, \ {nodes}. Suppose now
that two distinct polygons P, and P, intersect in a node 9. The preimage ©~!(¥9) is an open
segment and © (P, U P,) is homeomorphic to the space obtained from ﬁl U ﬁh by identifying
the nodal edges that correspond to ¥.

In order to understand such identification, choose an orientation of M7 g () in a neigh-
bourhood of ©~!(9) and an orientation of the plane II(¥)), so that P, and P, inherit an ori-
entation from II(¢#), and each nodal edge of ﬁl is induced an orientation from f’l Together
with Corollary 3.15, the last paragraph of the proof of [13, Proposition 4.7] shows that © is
orientation-preserving on one of the two polygons P, or P, and orientation-reversing on the
other. Hence, the two nodal edges corresponding to ¥ are identified through a map that pre-
serves their orientation; we can also prescribe that such identification is a homothety in the
chosen realizations of ]31 and ﬁh.

Part of the above analysis can be rephrased as follows.

Lemma 3.18. The space MT pq1(9) is homeomorphic to the real blow-up of Crpy,(9) at its

nodes.
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A further step in describing the topology of M7 4q(19) is to study its ends.

Construction 3.19 (The strips S; o(?)). As remarked above, every ideal edge of P, has equation
Ui =a+ (c+1)/2 for some a € {0,...,m—1} and i € {1,2,3}. Viewing P inside R?, an open
thickening of the corresponding ideal edge intersects ]31 in a region Sf’a(ﬂ) homeomorphic to
[0,1] x R, where {0,1} x R correspond to portions of nodal or semi-balanced segments. In
every ]31 such thickenings can be chosen so that the corresponding regions are disjoint and their
ends {0} x R and {1} x R cover 1/4 of the corresponding nodal or semi-balanced segment.
The complement inside 131 of such strips is clearly compact. (One example of region Sf’ L(0) is
illustrated in Figure 10 on the left: it is the darker thickening of the horizontal ideal edge of
P

It follows that, for fixed i € {1,2,3} and a € {0,1,...,m — 1}, the regions {Sf’a(ﬁ)} glue to
give a strip S; () homeomorphic to [0,1] x R, with {0,1} x R corresponding to semi-balanced

triangles. Thus there are 3m disjoint such strips, each one associated to a pair (i, a).
We are now ready to completely determine the topology of the space MT pyi ().

Proposition 3.20 (Topology of the space of balanced triangles with assigned area). Suppose
that 9 = 2m + ¢ where c € (—1,1).
(i) MTpai(9) is a connected, orientable, smooth bordered surface of finite type, whose bound-
ary is the set of semi-balanced triangles.
(i) The boundary of MT pa(¥) is a union of 3m disjoint open intervals.
(111) The surface MTpq(0) has 3m ends, namely the strips S; (V). Each strip corresponds in
Crppe () to a line ¥; = a+ (¢4 1)/2 for some a € {0,1,...,m — 1} and i € {1,2,3}.
Moreover, each S; 4(V) is homeomorphic to [0,1] x R and {0,1} x R corresponds to semi-

balanced triangles.
(iv) The Euler characteristic of MTpa(9) is X(MTpar(9)) = —m(m — 3)/2.

Proof. (i) Thanks to Corollary 3.15 we only need to prove that MT 4 (¥) is connected and of
finite type. Since the balanced carpet Crpy,; (1) is connected by Lemma 3.17 (ii) and it consists
of finitely many nodes and polygons, both claims follow from Lemma 3.18.

(i) It will be enough to show that the set of semi-balanced triangles with angles ¢, 92, 93,
satisfying ¢y = o 4+ ¢35 and 1 + ¥ + ¥3 = 1, is a union of m open intervals. In case ¢ = 0
these m intervals correspond to m types of triangles with angles m(m, % +1, % +m—1—1) where
[ € [0,m — 1] is an integer number. In case ¢ # 0 these intervals correspond to the intersection
of the line ¥1 = ¥ + 3 with m open triangles of the carpet Crp(1}).

(iii) follows from Construction 3.19.

(iv) The internal part of M7, () is an orientable surface without boundary and so the
Euler characteristic of its cohomology with compact support coincides with its Euler charac-
teristic by Poincaré duality. Decompose the interior of M7 4 (1) into a finite union of open
1-cells MTZ,(¥9) (corresponding to internal nodes in the balanced carpet) and open 2-cells

(corresponding to the intersection of Bal(¢)) with open triangles in the carpet). By Lemma
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3.17 (iii) the space M7 pq(¥) is a union of E open 2-cells and N open 1-cells. Thus, its Euler
characteristic is £ — N = —m(m — 3)/2. O

Let us now consider balanced triangles (with labelled vertices, as usual) endowed with an
orientation. We stress that the orientation and the labelling of the vertices are unrelated. Let
MT,(9) be the set of oriented balanced triangles of area (¢ — 1) in which the vertices are
labelled anti-clockwise, and let MT, ,(¥) be the analogous space in which the vertices are
labelled clockwise. Both sets can be given the topology induced by the identification with
MTpa(9). The space of oriented balanced triangles is then M7 (9) U MT,,(9).

Definition 3.21 (Doubled space of balanced triangles). The doubled space of balanced triangles
of area (¢ — 1) is the space M T, (1) obtained from MT " (9) LU MT, (9) by identifying an

oriented semi-balanced triangle A to the triangle obtained from A by reversing its orientation.
It follows that M7, () is homeomorphic to the double of MT yu(¥).

Proposition 3.22 (The doubled space of balanced triangles of assigned area). Let ¥ > 1 a
non-odd real number and let m = L%J
(i) ./\/17'2E ,(0) is a connected, orientable surface of finite type, without boundary.
(ii) M'Tbal( ) has Euler characteristic —m?, genus (m — 1)(m — 2)/2 and 3m punctures.
(iii) The action of S by relabelling the vertices of the triangles consists of orientation-preserving
homeomorphisms of MTi,(9).

(iv) The action of Sz on the set of punctures of MTil(ﬂ) has m orbits of length 3.

Proof. (i) is a consequence Proposition 3.20 (i), since M7, (9) is the double of MT e (0).

(ii) Since MT,:)ZZ(ﬁ) is an orientable surface without boundary, the Euler characteristic
agrees with the Euler characteristic with compact support. By Proposition 3.20 (ii) the surface
MT pai(9) has boundary consisting of 3m open segments. Hence x (M T, () = 2x(MT par(V))—
3m = —m(m —3) —3m = —m?.

By Proposition 3.20 (iii) each end of M7y (V) is associated to a strip Si(¥) with a €
{0,1,...,m} and @ € {1,2,3}, and it is homeomorphic to [0,1] x R, and so it doubles to
punctured disk S x R inside M7, al( ), that will be denoted by £:(1J). Hence, we obtain 3m
punctures. The genus of g(MT5,(¥)) =1 — 32 — I\ (MT3E,(¥9)) is then easily computed.

(iii) Choose an arbitrary orientation of MTbal( ). We want to show that every transposition
(ij) € S3 acts on MT,(9) through an orientation-preserving homeomorphism. Consider for
instance the transposition (23), that sends a triangle in M7, (9) with nonintegral angles
(91,92,93) to the triangle in M7, (9) with nonintegral angles (91,93,92). Since MT (V)
and M7, (1) have opposite orientations when viewed as subsets of MT7,(9), it is enough to
show that (23) acts on MT 4 (¥) by reversing its orientation.

By Lemma 3.17 (iv), there exists a point in Crpy,,; (9) with non-integral coordinates (¢4, ¥2,92),
and so a corresponding balanced triangle A in MTbial(ﬁ). It is clear that the transformation
(01,02,03) = (¥1,93,02) of Crpyy (V) reverses the orientation at (1, v2,92). Hence, (23) acts

on MTpq(9) by reversing its orientation.
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(iv) Each orbit of the Sz-action on the ends £ (1) is of type {E1(Y), E2(Y), E3(Y)}. Since
a €{0,1,...,m — 1}, there are m orbits of length 3. O

3.3.2 Case ¥ odd

The case of ¥ = 2m + 1 for some integer m > 0 is much easier to handle.

Lemma 3.23 (Description of the balanced carpet). The balanced carpet Crpyg (2m+1) consists
of m(m + 1)/2 internal nodes.

Proof. Triangles in MTpq(2m + 1) have area 2mm by Gauss-Bonnet. By Lemma 3.10 and
Remark 3.9, the balanced carpet Crp,,;(2m + 1) consists just of triples (91, 92,93) € Z3 such
that 91 + 92 + 93 =2m + 1 and 1 < 9; < m for all 7. It is easy to see that such points are
m(m + 1)/2 internal nodes. O

This easily lead to the description of the moduli space of balanced triangles.

Proposition 3.24 (Topology of the space of balanced triangles). The space MT pq(2m + 1) is
diffeomorphic to the disjoint union of m(m + 1)/2 copies of the open 2-simplex A2,

Proof. Fix (¢1,72,93) € Crpyy(2m + 1). By Proposition 3.8 (ii) and Proposition 3.8 the locus
of triangles A in MT i (2m+1) with 9;(A) = ¥; for i = 1,2, 3 is real-analytically diffeomorphic
to the set of triples (I1,1l2,13) € (0,27)3 such that Iy + I + I3 = 27, which is clearly homothetic

to A2. The conclusion then follows from Lemma 3.23. O

Let Crpbial(Zm—l— 1) be the disjoint union of two copies of Crpy,;(2m+ 1), namely its elements
are of type (9, ¢€), where ¥ € Crpi,(2m + 1) and ¢ = £1. We denote by M7, (2m + 1) the
doubled space of spherical triangles of area 2mm and by % : MT%I(2m+ 1) — Crplil(2m+ 1)
the map that sends an oriented triangle A to (9(A),e(A)), where ¢(A) = 1 if the vertices of A

are numbered anti-clockwise, and €(A) = —1 otherwise.

Proposition 3.25 (Topology of the doubled space of balanced triangles). The space /\/lTil (2m+
1) is diffeomorphic to Crpil(Qm +1) x A2, namely to the disjoint union of m(m + 1) open 2-
simplices. The permutation group S3 that relabels the vertices of a triangle in MTZZZQm +1)
acts on an element (9,¢,y) of Crpf;l(Qm +1) x A2 permuting the coordinates of 9 and y, and

through its sign on €.

Proof. The first claim relies on Proposition 3.24. The remaining ones are straightforward. [

4 Moduli spaces of spherical tori

The goal of this section is to describe the topology of the moduli space MS; 1(¢) and so to
prove Theorem A (case ¥ non-odd) and Theorems C-D (case ¢ odd).
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We recall that, by isomorphism between two spherical tori, we mean an orientation-preserving
isometry. We refer to Section 6 for the definition of Lipschitz distance and topology on MS ;1 (¥)
and MS ﬂ (9) needed below.

The object of our interest is the following.

Definition 4.1 (MS; () as a topological space). The space MS1(¥) is the set of isomor-
phism classes of spherical tori with one conical point of angle 271, endowed with the Lipschitz

topology.
In order to prove Theorem A it will be convenient to introduce the notion of 2-marking.

Definition 4.2 (2-marking). A 2-marking of a spherical torus 7" with one conical point z is a

labelling of its nontrivial 2-torsion points or, equivalently, an isomorphism H1(T; Zs) = (Z)?.

There is a bijective correspondendence between isomorphisms p : (Z2)? — H1(T’; Zs) and or-
derings of the three non-trivial elements of H;(T'; Z9): it just sends p to the triple (u(ey), pu(e2), u(ei+
e2)). In fact, the action of SL(2,Zs) on 2-markings corresponds to the Ss-action that permutes
the orderings. If the torus 71" has a spherical metric with conical point z, the nontrivial confor-
mal involution ¢ fixes x and its three non-trivial 2-torsion points: the above ordering is then
equivalent to the labelling of such three points. In this case, an isomorphism of between two

2-marked spherical tori is an orientation-preserving isometry compatible with the 2-markings.

Definition 4.3 (MSﬂ as a topological space). The space MSﬁ (9) is the set isomorphisms
classes of 2-marked spherical tori with one conical point of angle 271, endowed with the Lipschitz

topology.

In Remark 6.28 we show that MS7 1(¥) and MSﬁ () can be endowed with the structure
of orbifolds in such a way that the map ./\/lSﬁ (¥) = MS1,1(9) that forgets the 2-marking is a

Galois cover with group S3 (which is unramified in the orbifold sense).

4.1 The case when 9 is not an odd integer

Because of the relevance for the orbifold structure of the moduli spaces we are interested in, we

first classify all possible automorphisms of spherical tori with one conical point.

Proposition 4.4 (Automorphisms group of a spherical torus (¥ non-odd)). Suppose that 9 ¢
27 + 1. For any spherical torus (T,x) of area 2m(¥ — 1) the group of automorphisms G is
isomorphic either to Zo, or to Zy, or to Zg.

(i) A torus with automorphism group Ze exists if and only if dq(9,6Z) > 1.

(ii) A torus with automorphism group Z4 exists if and only if di(9,4Z) > 1.
(iii) For each ¥ there can be at most one torus with automorphism Z4 and one torus with

automorphism Zg.
(iv) The subgroup of G of automorphisms that fix the 2-torsion points of T is isomorphic to

Zo, generated by the conformal involution.
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In Figure 9 we have highlighted with @) or H respectively the triples ©(A) such that T'(A)

has automorphism group isomorphic to Z4 or Zg respectively.

Proof of Proposition 4.4. Recall that by Proposition 2.17 each torus has an automorphism of
order 2, namely the conformal involution. Clearly such involution fixes the 2-torsion points of
the torus. This implies (iv) and it proves that |Gr| is even.

To bound the automorphism group we note that the action of G fixes x and preserves
the conformal structure on 7. Hence, in case |Gp| > 2 the torus T' is biholomorphic either
to Ty = C/(Z ® QZ) or Ty = C/(Z & (6Z), where (;, = exp(2mi/k), and its automorphisms
group is isomorphic to Z4 (generated by the multiplication by (4) or to Zg (generated by the
multiplication by (g) correspondingly.

Let us now prove the existence part of (i) and (ii).

(i) Suppose that d;(9,6Z) > 1. According to Theorem 3.1, this condition is equivalent
to existence of a spherical triangle A with angles 719/3. Such a triangle has a rotational Zs-
symmetry. It follows that the torus T'(A) has an automorphism of order 6.

(ii) Suppose that dy(9,4Z) > 1. According to Theorem 3.1, this condition is equivalent to
existence of a spherical triangle A with angles 7(9/2,19/4,19/4). This triangle has a reflection,
i.e. an anti-conformal isometry that exchanges two vertices of angles m9/4. Gluing two copies
of A along the edge that faces the angle m9/2, we obtain a quadrilateral with four edges of the
same length and four angles w/2. It is easy to see that such quadrilateral has a rotational
Z4-symmetry, and so that T'(A) has an order 4 automorphism.

Let now (7', z,1) be any spherical torus with |G| > 2 and let us show that it has to be one
of two tori constructed above. Consider two cases.

First, suppose that the Voronoi graph I'(T') is a trefoil. In this case by Proposition 2.21
and Theorem B there is a unique collection of three geodesic loops 71, 72, 73 based at x that
cut T into two isometric strictly balanced triangles A and A’. This collection is sent by G to
itself, and so |G| is divisible by three, hence |Gr| = 6. It is easy to see then that the subgroup
Zs3 C G sends A to itself and permutes its vertices. So A has angles 71/3 and so we are in case
(i). Since ¥/3 cannot be integer, this also proves the uniqueness of a torus with automorphism
group Zsg.

Suppose now that the Voronoi graph I'(T") is an eight graph. Then again by Proposition
2.21 and Theorem B there is a canonical collection of four geodesic loops 71, 2, 11, 2. Since
Gr sends the couple 71,72 to itself, we see that geodesics 77 and 7y cut a neighbourhood of z
into four sectors of angles /2. The same holds for the couple of loops 71 and 2. Since by
Remark 2.22 each ~; bisects two sectors formed by 7 and 72 we see that, taken together, the
geodesics v1, Y2, 71, 2 cut a neighbourhood of z into four eight sectors of angles m/4. Hence
Y1, Y2, M cut A into two semi-balanced triangles with angles m(9/2,9/4,9/4), and so we are in
case (ii). The uniqueness of a torus with automorphism group Z, follows from the uniqueness
of an isosceles triangle with angles m(9/2,19/4,9/4). O

We recall in more detail the construction mentioned in the introduction.
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Construction 4.5. Consider the following maps of sets

T7(2)
—_— .

MTi(9) MSP} )
W)/
The map T is defined by sending an oriented triangle A to the torus T(A), where we mark
by p; the midpoint of the side opposite to the vertex x; of A.

As for A®) | we proceed as follows. Let (T, z,p) be a torus with its order 2 points marked
by p1, p2, ps.

Suppose first that T does not have a rectangular involution. By Theorem B there is a unique
collection of three geodesics loops ; that cuts 7" into two congruent strictly balanced triangles
A and A’. We enumerate the geodesics so that each p; is the midpoint of ;. Next, we label the
vertices of A by x1, x2, x3 so that x; is opposite to ;. Hence, we associate to T" a unique strictly
balanced triangle with enumerated vertices. In case the vertices of A go in anti-clockwise order,
we associate to A the corresponding point in the interior of MT{LZ(ﬁ), otherwise we associate
to A a point in the interior of MT, (V).

Suppose now that 7" has a rectangular involution. Then by Theorem B the torus T' can be
cut into two isomorphic semi-balanced triangles in two different ways. At the same time the
rectangular involution sends one pair to the other by reversing the orientation and fixing the
labelling of the vertices. This means that the two points associated to 7" in the boundaries of
MTE(9) and MT,,,(9) are identified in MT7,(9).

At this point we have the tools to prove the following preliminary fact.

Lemma 4.6 (T® is bijective). The map T : M7",;tal(19) — MSQ (9) is a bijection and A®)
15 1ts 1nverse.

Proof. Tt is very easy to see that T o A®) is the identity of ./\/1552% (19). Vice versa, A o T2
is the identify of M7, (¢) by Theorem B. O

Remark 4.7 (Orbifold Euler characteristic). We recall from the introduction that we are using
the definition of orbifold Euler characteritic given at page 29 of [7]. We are particularly interested
in two properties enjoyed by the orbifold Euler characteristic:
(a) if Y — Z is an orbifold cover of degree d, then x()) =d- x(2);
(b) if ) is a connected, orientable, two-dimensional orbifold with underlying topological space
Y, then

1 1 1
x(Y) = ord(y)X(Y) B ; (ord(y) - ord(y)) 7

where ord()) is the orbifold order of a general point of Y and ord(y) is the orbifold order
of y € Y, and the sum is ranging over points y € Y that have orbifold order strictly greater
than ord(Y).
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Since we will only compute x for two-dimensional, connected, orientable orbifolds, property

(b) could even be taken as a definition.

The main ingredient for the proof of Theorem A is to show that the map T® is a homeo-
morphism and so that, as a topological space, MS 52% (9) is a surface. As a consequence, we can
endow MS; (2 )( 9) with an orbifold structure (as done in Remark 6.28) in such a way that every

point has orblfold order 2, which is coherent with Proposition 4.4(iv).

Theorem 4.8 (Moduli space of spherical tori with 2-marking). Let ¥ > 1 be a real number
such that ¥ ¢ 2Z + 1 and let m = |%FL|. As a topological space, MS%Q% (9) has the following
properties.
(i) The map T : MTbial(ﬁ) — MSS% (9) is a homeomorphism and so MS% (9) is a connected,
orientable surface of finite type without boundary.
(ii) It has genus (m — 1)(m — 2)/2 and 3m punctures.
(iii) The group S3 that permuted the 2-torsion points of a torus acts on MSﬁ (9) by orientation-
preserving homeomorphisms.
(iv) The action of Sz on the set of punctures of MS&Q% (9) has m orbits of length 3.
As an orbifold, ./\/1552% (9) is isomorphic to the quotient of its underlying topological space by the

trivial Zo-action and its orbifold Euler characteristic is —m? /2.

Proof. The map T? is bijective by Lemma 4.6 and in fact a homeomorphism by Theorem 6.5.
Hence, (i-iv) follow from Proposition 3.22 (i-iv). The orbifold structure was described just above
the statement of the theorem: the involution ¢ is the only nontrivial automorphism of a point
in MSQ(&) by Proposition 4.4 (iv), and it acts trivially on MTil(ﬁ). Hence, MSQ(Q?) is
isomorphic to the quotient of MTbal( ) by the trivial Zg-action. As a consequence, the orbifold
Euler characteristic satisfies X(MS“( 9)) = x(MT5,(9))/2. O

As above, we can endow MS; 1(9) with an orbifold structure as in Remark 6.28, in such a
way that the orbifold order of a point in MS; 1(1}) agrees with the number of automorphisms
of the corresponding spherical torus.

Let us finally prove Theorem A.

Proof of Theorem A. By Remark 6.28, the map ./\/18522(19) — MS;1,1(0) that forgets the 2-
marking is an unramified Sz-cover of orbifolds. Hence, MS; 1(¥) is a smooth, connected two-
dimensional orbifold of finite type by Theorem 4.8 (i), and orientability follows from Proposition
4.4.

(ii-iii-iv) Clearly x(MS1,1(9)) = (/\/lS1 1( ))/|S3| = —m? /12 by Theorem 4.8. Also, (iii-iv)
and remaining claim of (ii) are established in Proposition 4.4.

(i) The space MS 1(¥) has m punctures by Theorem 4. 8 (ii,iv). Moreover its (non-orbifold)

Euler characteristic of is 2(—m?/12 + €), where € € {O, T 3, 172 = i + %} Indeed, a point of
order 4 in MS11(¥9) contributes to e with 1 1= % — 1 and a point of order 6 contributes with
3 =1 — 1. Hence, the genus of MS11(9) is 1 — F(m + 2(—m?/12 +¢)) = LWJ. O
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Let us finish this subsection with a simple corollary of Theorem 4.8. As a topological space,
we denote by Wﬂ (¥) the un