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According to Pommerenke [1,2] a compact set £ C C is called uni-
formly perfect if the doubly connected domains in C\E that separate F
have bounded moduli. The limit sets of finitely generated non-elementary
Kleinian groups as well as Julia sets of hyperbolic rational functions are
known to have this property [2]. In [3] Hinkkanen proves that Julia sets
of all polynomials are uniformly perfect. Recently he extended his proof to
the case of rational functions [4]. In this note we give a simple proof of
Hinkkanen’s theorem for arbitrary rational functions.

Let N be an open set in C. We assume that each component of N is
hyperbolic. A closed curve in N is called trivial if it is freely homotopic to
a point in N. A closed curve in N is called peripheric if it is either trivial
or homotopic to an arbitrarily small loop around a puncture of N. Iy(C)
stands for the Poincaré length of a curve C' C N.

Proposition 1 If the Poincaré lengths of all non-trivial closed curves in N
are bounded from below by a constant & > 0 then E = C\N is uniformly
perfect.

Proof. Let A C N be a non-degenerate annulus separating E. Denote
by C the simple closed curve separating 0A and having minimal Poincaré
length in A. Then C' is non-trivial in N. By the generalized Schwarz lemma
we have [4(C) > In(C). So

. m < m
14(C) ~ In(0O)
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mod(A) < %




QED.

Remark. The converse is also true. Indeed, assume that there is a
simple closed Poincaré geodesic v C N having length [. Then by the
Collar lemma [5] there exists an annulus A embedded in N, such that ~y
is non-trivial in A, and the hyperbolic area of A is 2[/sinh(l/2). Then
mod(A) > (Isinh(l/2))"! — oo, [ = 0.

Now we prove that the set of normality N(f) (the complement of the
Julia set) of a rational function f, deg f > 2 satisfies the assumption of the
Proposition. Let 7 be a closed non-trivial curve in N(f). The description of
the dynamics of f on the set N(f) due to Fatou and Sullivan [6-8] implies
that one of the following statements is true:

a). f™(v) is trivial in N(f) for some n € N or

b). f™(v) separates the boundary of Arnold — Herman ring for some
n € NU{0}.

In the case b) we are done because: Iy(v) > In(f"y), there are finitely
many Arnold — Herman rings, and they are all non-degenerate.

In the case a) take n as small as possible and denote by D the component
of N(f) containing f™y. Then f™v is non-peripheric in D\{critical values of
f}. (Otherwise we could deform f™7 to a point in D or to a small loop around
a critical value without hitting critical values, so f* !y would be trivial in
N(f)). Choose three points b; € J = C\N(f) and set G = C\{by, by, bs}.
Then f™y is trivial in G but non-peripheric in G\{critical values of f}, so

IN(Y) 2 In(f"y) = la(f") = 6,

where § is the minimal hyperbolic distance between critical values of f with
respect to G. QED.

Remark. If f is an entire transcendental function then N(f) can have
doubly connected components of arbitrarily large moduli [9].

I thank J. Hubbard for discussions.
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