Julia sets are uniformly perfect

A. Eremenko*

1992

According to Pommerenke [1,2] a compact set $E \subset \bar{\mathbf{C}}$ is called uniformly perfect if the doubly connected domains in $\bar{\mathbf{C}} \setminus E$ that separate E have bounded moduli. The limit sets of finitely generated non-elementary Kleinian groups as well as Julia sets of hyperbolic rational functions are known to have this property [2]. In [3] Hinkkanen proves that Julia sets of all polynomials are uniformly perfect. Recently he extended his proof to the case of rational functions [4]. In this note we give a simple proof of Hinkkanen's theorem for arbitrary rational functions.

Let N be an open set in \mathbb{C} . We assume that each component of N is hyperbolic. A closed curve in N is called trivial if it is freely homotopic to a point in N. A closed curve in N is called peripheric if it is either trivial or homotopic to an arbitrarily small loop around a puncture of N. $l_N(C)$ stands for the Poincaré length of a curve $C \subset N$.

Proposition 1 If the Poincaré lengths of all non-trivial closed curves in N are bounded from below by a constant $\delta > 0$ then $E = \bar{\mathbf{C}} \backslash N$ is uniformly perfect.

Proof. Let $A \subset N$ be a non-degenerate annulus separating E. Denote by C the simple closed curve separating ∂A and having minimal Poincaré length in A. Then C is non-trivial in N. By the generalized Schwarz lemma we have $l_A(C) \geq l_N(C)$. So

$$\operatorname{mod}(A) = \frac{\pi}{l_A(C)} \le \frac{\pi}{l_N(C)} \le \frac{\pi}{\delta}.$$

^{*}Supported by NSF grant DMS-9101798

QED.

Remark. The converse is also true. Indeed, assume that there is a simple closed Poincaré geodesic $\gamma \subset N$ having length l. Then by the Collar lemma [5] there exists an annulus A embedded in N, such that γ is non-trivial in A, and the hyperbolic area of A is $2l/\sinh(l/2)$. Then $\operatorname{mod}(A) \geq (l\sinh(l/2))^{-1} \to \infty, \ l \to 0$.

Now we prove that the set of normality N(f) (the complement of the Julia set) of a rational function f, deg $f \geq 2$ satisfies the assumption of the Proposition. Let γ be a closed non-trivial curve in N(f). The description of the dynamics of f on the set N(f) due to Fatou and Sullivan [6-8] implies that one of the following statements is true:

- a). $f^n(\gamma)$ is trivial in N(f) for some $n \in \mathbf{N}$ or
- b). $f^n(\gamma)$ separates the boundary of Arnold Herman ring for some $n \in \mathbb{N} \cup \{0\}$.

In the case b) we are done because: $l_N(\gamma) \geq l_N(f^n \gamma)$, there are finitely many Arnold – Herman rings, and they are all non-degenerate.

In the case a) take n as small as possible and denote by D the component of N(f) containing $f^n\gamma$. Then $f^n\gamma$ is non-peripheric in $D\setminus\{\text{critical values of }f\}$. (Otherwise we could deform $f^n\gamma$ to a point in D or to a small loop around a critical value without hitting critical values, so $f^{n-1}\gamma$ would be trivial in N(f)). Choose three points $b_i \in J = \overline{\mathbf{C}}\setminus N(f)$ and set $G = \overline{\mathbf{C}}\setminus\{b_1, b_2, b_3\}$. Then $f^n\gamma$ is trivial in G but non-peripheric in $G\setminus\{\text{critical values of }f\}$, so

$$l_N(\gamma) \ge l_N(f^n \gamma) \ge l_G(f^n \gamma) \ge \delta,$$

where δ is the minimal hyperbolic distance between critical values of f with respect to G. QED.

Remark. If f is an entire transcendental function then N(f) can have doubly connected components of arbitrarily large moduli [9].

I thank J. Hubbard for discussions.

References

- 1. Ch. Pommerenke. Uniformly perfect sets and the Poincaré metric. Arch. Math., 32, 1979, 192-199.
- 2. Ch. Pommerenke. On uniformly perfect sets and Fuchsian Groups. Analysis, 4, 1984, 299-321.
- 3. A. Hinkkanen. Julia sets of polynomials are uniformly perfect. Preprint, 1991, 7p.

- 4. A. Hinkkanen. Julia sets of rational functions are uniformly perfect. Preprint, 1992, 15p.
- 5. B. Randol. Cylinders in Riemann surfaces. Comment. Math. Helv., 54, 1979, 1-5.
- 6. D. Sullivan. Quasi conformal homeomorphisms and dynamics I. Ann. Math., 122, 1985, 401-418.
- 7. A. Beardon. Iteration of Rational Functions: Complex analytic dynamical systems. N. Y., Springer, 1991.
- 8. A. Eremenko, M. Lyubich. The dynamics of analytic transformations. Leningrad Math. J., 1, 1990, 563-633.
- 9. I. N. Baker. Multiply connected domains of normality in iteration theory. Math. Z., 81, 1963, 206-214.

Purdue University West Lafayette IN 47907