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Abstract

For Riemannian metrics of constant positive curvature on a punc-

tured sphere with conic singularities at the punctures and co-axial

monodromy of the developing map, possible angles at the singular-

ities are completely described. This completes the recent result of

Mondello and Panov.

The related problem of describing possible multiplicities of critical

points of logarithmic potentials of finitely many charges is also solved.
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Existence of a Riemannian metric of constant positive curvature in a
given conformal class on a punctured sphere with conic singularities at the
punctures and prescribed angles at the singularities is an important problem,
but at present the solution in this generality seems to be out of reach, see
for example the surveys in the introductions of [6, 10].

Mondelo and Panov [10] proposed a reduced problem: to describe possible
angles at the singularities for such metrics. (The conformal class is not
prescribed.) They solved this problem for generic angles. In this paper their
solution is completed by the study of the remaining case which was excluded
in [10].

The results in [10] are the following. Let

α = {α1, . . . , αn}, αj > 0, αj 6= 1 (1)

∗Supported by NSF grant DMS-1665115.

1



be the set of angles. We measure all angles in turns: 1 turn is 2π radians.
Strictly speaking, α his is an unordered multiset; some elements can be
repeated. Alternatively, α is an element of the n-th symmetric power of
R>0. Whenever it is convenient, we list non-integer αj’s first, followed by
integer αj’s.

The restrictions are: the Gauss–Bonnet theorem,

n∑

j=1

(αj − 1) + 2 > 0, (2)

and
d1(Z

n
o ,α− 1) ≥ 1, (3)

where 1 = (1, . . . , 1), and Zn
o is the subset of the integer lattice consisting of

vectors with odd sums of coordinates, and d1 is the ℓ1 distance.
Mondello and Panov proved that these two conditions are always nec-

essary, and if one replaces (3) by the strict inequality, they also become
sufficient. So to complete their description, it remains to investigate the case
of equality in (3):

d1(Z
n
o ,α− 1) = 1. (4)

Moreover, they proved that every metric satisfying (4) is co-axial, which
means that the monodromy group of the developing map is a subgroup of
the unit circle. This gives a motivation for study of metrics with co-axial
monodromy. Here and in what follows, S is the Riemann sphere (compact
simply-connected Riemann surface). The sphere with the standard spheri-
cal metric will be denoted by C. In general, co-axial monodromy does not
imply (4).

We say that a multiset (1) is admissible if there exists a metric of constant
curvature 1 on S\{n points} with conic singularities at these n points with
angles αj, and the developing map of this metric has co-axial monodromy.
Our main result is

Theorem 1. For a multiset (1) assume that αm+1, . . . , αn are integers while
α1, . . . , αm are not integers. For α to be admissible it is necessary that there
exist a choice of signs ǫj ∈ {±1} and a non-negative integer k′ such that

m∑

j=1

ǫjαj = k′, (5)
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and the number

k′′ :=
n∑

j=m+1

αj − n− k′ + 2 is non-negative and even. (6)

If the coordinates of the vector

c := (α1, . . . , αm, 1, . . . , 1
︸ ︷︷ ︸

k′+k′′ times

) (7)

are incommensurable, then (5) and (6) are also sufficient.
If c = ηb, where coordinates of b are integers whose greatest common

factor is 1, then there is an additional necessary condition

2 max
m+1≤j≤n

αj ≤

q
∑

j=1

|bj|. (8)

Conditions (5), (6), (8) are sufficient for α to be admissible.

As a corollary we mention that unless n = 2, a co-axial metric must have
some integer angles whose sum is at least n+ k′ − 2 and has the same parity
as n+ k′, where k′ is a number that satisfies (5) with some choice of signs.

We briefly recall the definition of the developing map of a metric of con-
stant positive curvature. Start with a small region in S\{singularities}. It is
well-known that there is an isometry from this region to a region in the stan-
dard sphereC. This isometry is conformal and thus analytic, and it admits an
analytic continuation along every curve which does not pass through the sin-
gularities. We obtain a multi-valued function f : S\{singularities} → C (or
a genuine function on the universal covering) which is called the developing
map. Conic nature of the singularities means that f(z) = f(a)+(c+o(1))zα

near a singularity a with angle the α, or f(z) = (c + o(1))z−α if f(a) = ∞,
where z is a local conformal coordinate which equals 0 at a, and α is the
angle, f(a) means the radial limit when z → 0, and c 6= 0. The result fγ
of an analytic continuation of f along a closed path γ not passing through
the singularities is related to the original germ of f by fγ = φ ◦ γ, where φ
is an isometry of C, so we obtain a representation of the fundamental group
of S\{singularities} in the group of linear-fractional transformations. The
image of this representation is called the monodromy group, and the devel-
oping map and the metric are called co-axial if this monodromy group is a
subgroup of the unit circle. See [5, 6, 10].
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Suppose now that f : S → C is the developing map of a metric with
co-axial monodromy. Monodromy group consists of transformations w 7→
λw, |λ| = 1. Then the meromorphic 1-form df/f is well defined on the
sphere, so

R = f ′/f (9)

is a rational function. We assume without loss of generality that ∞ ∈ S is
not a pole of R(z)dz, so that R has a zero of order two at ∞. From the local
considerations we see that every pole of R is simple, the residue β is real, and
every pole of R is a conic singularity of the metric with the angle αj = |β|,
unless β = ±1. In the last case the pole of R is a non-singular point of the
metric. Moreover, a zero of R in C of multiplicity r is a conic singularity
with the angle αj = r+ 1. As R has a double zero at infinity, the number of
zeros (counting multiplicity) in C is q − 2, where q is the number of poles.

Thus

R(z) =
m∑

j=1

ǫjαj

z − aj
+

k∑

j=1

δj
z − bj

, (10)

where ǫj ∈ {±1}, δj ∈ {±1}, and R has zeros in C whose sum of multiplici-
ties is q−2, q = m+k, and these multiplicities are αj −1 for m+1 ≤ j ≤ n.
The developing map itself is thus given by

f(z) =

q
∏

j=1

(z − zj)
βj , (11)

where βj = ǫjαj for 1 ≤ j ≤ m and βj = δj−m for m + 1 ≤ j ≤ q. The
condition

m∑

j=1

ǫjαj +
k∑

j=1

δj = 0 (12)

holds by the residue theorem. As the number of zeros of R in C must be
m+ k − 2, and each zero is a singularity of the metric, we obtain

n∑

j=m+1

(αj − 1) = m+ k − 2. (13)

So a necessary condition for α to be admissible is

Condition 1. There exists a partition α = A ∪ B into two sub-multisets
A = {α1, . . . , αm} and B = {αm+1, . . . , αn} so that:
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All elements of B are integers, and
There exist an integer k, and a choice of signs ǫj ∈ {±1}, 1 ≤ j ≤ m

and δj ∈ {±1}, 1 ≤ j ≤ k, such that (12) and (13) hold.

Proposition 1. Condition 1 implies (5) and (6).

Proof. Condition 1 coincides with (5) and (6) when A contains no integers.
In this case we have k = k′ + k′′.

If for some α a partition A,B and numbers k, ǫj , δj as required by Con-
dition 1 exist, then there exists another partition A′, B′ with the same prop-
erties and with the additional property that A′ contains no integers.

Indeed, suppose that A = {α1, . . . , αm} and αm is an integer. Then define
A′ = {α1, . . . , αm−1} and B′ = {αm, . . . , αn}. To restore (12) we must add
αm of δj’s equal to −ǫm; this increases k to k∗ = k + αm and decreases m to
m∗ = m − 1, so the total increases in the right and left hand sides of (13)
are equal, so this condition (13) is satisfied for the new partition A′, B′. We
repeat this procedure until all integer angles are removed from A. In the
special case when all angles are integers, A will be empty. This proves the
proposition and necessity of conditions (5) and (6) in Theorem 1.

We will call such partitions where A consists of all non-integer angles
of α reduced. In a reduced partition of α, m is the number of non-integer
angles, and the only reason why a reduced partition may be non-unique is
that different choices of signs ǫj in (10) may be possible.

When the number of non-integer angles m ≤ 3, conditions equivalent to
(5) and (6) were obtained in [5], [6, Thm. 4.1], [7], and for m ≤ 3 they are
also sufficient.

Formula (10) for a reduced partition can be written as

f ′

f
=

m∑

j=1

ǫjαj

z − aj
−

k′∑

j=1

1

z − bj
+

k′+k′′∑

j=k′+1

(−1)j

z − bj
,

and the residue theorem combined with (5) shows that k′′ must be even, as
stated in (6).

We will see that for co-axial metrics, (5) and (6) are also sufficient in
the generic situation, when the coordinates of the vector c in (7) are incom-
mensurable. When coordinates of c are commensurable, there are additional
restrictions.

For a given multiset α = {α1, . . . , αn} satisfying Condition 1 we call a
quadruple (A,B, k, {ǫj}, {δj}) of parameters in (10) an arrangement for α.
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For an admissible α, different arrangements may give different metrics. We
do not require that all αj ∈ A are non-integers. If they are non-integers, the
arrangement is called reduced. If α is admissible, there exist finitely many
arrangements, at least one of them is reduced. This reduced arrangement
may be non-unique: various choices of ǫj in (5) are sometimes possible. A
priori, we have to deal with non-reduced arrangements because we have fur-
ther conditions besides conditions (5) and (6); it is possible that some of the
arrangements satisfy them, others do not.

The geometric meaning of a reduced arrangement is the following. The
developing map f as in (11) is a multi-valued function, but the preimage
f−1({0,∞}) is well defined (as radial limits). Metrics corresponding to re-
duced arrangements are exactly those for which the developing map does not
take the values 0,∞ at the singularities with integer angles.

From now on, we assume that Condition 1 is satisfied, an arrangement
(perhaps not reduced) is fixed, and the logarithmic derivative of the devel-
oping map is written as in (10). We denote for simplicity

{ǫ1α1, . . . , ǫmαm, δ1, . . . , δk} = {c1, . . . , cq}, (14)

where q = m + k. In the case of reduced arrangement k = k′ + k′′. The
question is what multiplicities of zeros of R are possible for a given vector of
residues c:

Question 1. Suppose that real non-zero numbers {c1, . . . , cq} are given, and

q
∑

j=1

cj = 0. (15)

Which partitions {ℓ1, . . . , ℓk} of q−2 can be realized as multiplicities of zeros
in C of the function

g(z) =

q
∑

j=1

cj
z − zj

, (16)

where zj are pairwise distinct complex numbers?

Notice that zeros of g are critical points of the potential

u(z) =

q
∑

j=1

cj log |z − zj|, (17)
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and Question 1 seems to be of independent interest.
The trivial but important property is the following:

If all cj are multiplied by a constant, the multiplicities of zeros of R do
not change.

So we introduce the real projective space RPq−2 which consists of non-
zero q-tuples (c1, . . . , cq) satisfying (15), modulo proportionality. A point
c ∈ RPq−2 is called rational if its equivalence class contains a q-tuple with
all cj rational. Let Z be the union of coordinate hyperplanes Zj = {c : cj =
0}, 1 ≤ j ≤ q. Let P be a partition of q − 2. A point c ∈ RPq−2 is called
P -admissible, if there exist pairwise distinct zj ∈ C such that the function
g in (16) has zeros of multiplicities P . A point c ∈ RPq−2\Z which is not
P -admissible is called P -exceptional.

Theorem 2. Let P = {ℓ1, . . . , ℓs} be a partition of q − 2. Every irrational
point c ∈ RPq−2\Z is P -admissible. A rational point if P -admissible if and
only if

2(1 + max
1≤j≤s

ℓj) ≤

q
∑

j=1

|bj|, (18)

where
{b1, . . . , bq} = {ηc1, . . . , ηcq}, η 6= 0, (19)

is a vector with mutually prime integer coordinates proportional to c.

When all residues in (16) are mutually prime integers the developing map
f = exp

∫
g is a rational function, for which positive residues are multiplici-

ties of zeros, negative residues are multiplicities of poles, and kj := ℓj+1, 1 ≤
j ≤ s are the multiplicities of f at other critical points, different from ze-
ros and poles. So our Question 1 with mutually prime integer residues is a
special case of the Hurwitz problem [2, 9]:

Question 2. Given two partitions {n1, . . . , nr} and {m1, . . . ,mt} of the
same number d > 1 and a multiset of integers {k1, . . . , ks}, kj ≥ 2, such that

r∑

j=1

(nj − 1) +
t∑

j=1

(mj − 1) +
s∑

j=1

(kj − 1) = 2d− 2, (20)

does there exist a rational function f of degree d with zeros of multiplicities
mj and poles of multiplicities nj and other critical points were multiplicities
of f are kj?
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Here mj are positive residues in (16) and nj are negative residues in (16).
By a simple perturbation argument, it is sufficient to consider the case

when the values of f at these “other critical points” are all distinct: critical
points with the same critical value other than 0,∞ can be perturbed so that
all these critical points will have different critical values, and the multiplicities
of zeros and poles are not affected.

The answer to Question 2 was recently obtained by Song and Xu [12].
The necessary and sufficient condition of existence of f is

kj ≤ d =
1

2

q
∑

i=1

|bi|, 1 ≤ j ≤ s. (21)

The necessity of this condition is evident because the right hand side is the
degree d of f . Sufficiency was proved by Song and Yu who generalized the
result of Boccara [2] for s = 1. This solves Question 2 and proves Theorem
2 for the case of rational vector c.

We state a trivial but important

Remark 1. For each P there are finitely many integer vectors (b1, . . . , bq)
which do not satisfy (21), thus there are finitely many rational points in
RPq−2\Z which are P -exceptional.

Theorem 2 gives an algorithm which determines whether a given multiset
α is admissible. The algorithm works as follows. Starting with a multiset
α = {α1, . . . , αn} we check conditions (5) and (6). If they are not satisfied,
then α is not admissible. If these conditions are satisfied, we consider all
arrangements for α and vectors c corresponding to them as in (14). If one
of these vectors is irrational, then α is admissible. If all are rational, we
construct integer vectors b as in (19). If one of these vectors b satisfies (18)
with ℓj = αj+m − 1, then α is admissible, if none, then not.

Most of Theorem 1 is a corollary of Theorem 2, except the statement that
it is enough to check condition (8) only for one reduced arrangement. This
will be addressed in the formal proof of Theorem 1 in the end of the paper.

Example 1. For arbitrary non-integer β > 0 the multiset {β, β, β, β, 3} is
not admissible. Conditions (5) and (6) are satisfied. The only reduced ar-
rangement is A = {β, β, β, β}, B = {3}, k = 0. So q = 4, b = (1, 1,−1,−1),
and condition (8) is violated.
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Example 2. For arbitrary β > 0 the multiset {β, β, 2β, 2β, 3} is admis-
sible. Conditions (5) and (6) are satisfied. Take the arrangement A =
{β, β, 2β, 2β}, B = {3}, k = 0. We have q = 4, b = (1,−1, 2,−2). In-
equality (8) is satisfied. Let us write a developing map explicitly for this
case:

f(z) =

(
(z − 1)2(2z + 1)

(z + 1)2(2z − 1)

)β

= hβ(z)

The corresponding metric has angles β at ±1/2 and angles 2β at ±1. In
addition to this, there is angle 3 at 0, because h has a triple point at 0 with
critical value −1.

Sketch of the proof of Theorem 2. First we notice that the problem of
constructing a surface of constant positive curvature, with co-axial mon-
odromy and with prescribed angles at conic singularities is equivalent to a
similar construction problem for a surface with a flat metric. Trying to con-
struct this flat surface by gluing cylinders, we discover the general nature
of obstructions: the given angles must satisfy some systems of inequalities.
These inequalities are too complicated to write explicitly, but we determine
their general nature: they are inequalities between some linear forms in the
residues cj with integer coefficients. Therefore, for each partition P , the set
of P -exceptional points is a rational polyhedron in the space RPq−2. If this
polyhedron consists of infinitely many points, then it must also contain in-
finitely many rational points. But we know from Theorem 2 that the number
of exceptional rational points is finite for given P , see Remark 1. Therefore
the polyhedron of P -exceptional points consists of finitely many points and
thus all exceptional points must be rational.

Proof of Theorem 2.

1. From spherical to flat and back.

Let f : S → C be the developing map as in (11). Let Ω = S\{z1, . . . , zq}.
Then we have the restricted map f ∗ : Ω → C∗.

We equip C∗ with the flat metric whose length element is |dz/z|. This
metric makes C∗ into an open cylinder infinite in two directions whose girth
(the length of the shortest non-trivial geodesic, a. k. a. the systole) is 2π.
We pull back this flat metric to Ω via f ∗ and obtain a flat surface which is
conformally equivalent to a sphere with q punctures, and some neighborhoods
of the punctures are semi-infinite cylinders of girths 2π|βj|. We call this
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surface (Ω, ρ), where ρ is the flat metric. The developing map f ∗ of (Ω, ρ)
has two special features: it maps Ω to C∗ (rather then C) and it tends to 0
or to ∞ at the punctures in the sense of radial limits.

Conversely, suppose that Ω is a Riemann surface conformally equivalent
to a punctured sphere, equipped with a flat Riemannian metric ρ such that
some neighborhoods of the punctures are semi-infinite cylinders of girth 2πµj.
Moreover, suppose that the developing map h maps Ω to C∗ and tends at
each puncture either to 0 or to ∞. By filling the punctures, we can extend
h to a (multivalued) map f : S → C and pull back the spherical metric to
S. The resulting surface has constant curvature 1, and in addition to conic
singularities in Ω has conic singularities at the punctures S\Ω. The angles
at these additional singularities zj are µj.

2. From flat surface to a system of linear inequalities.

Now we study this auxiliary flat surface (Ω, ρ) and its developing map h.
The level sets

Lt = {z ∈ Ω : log |h(z)| = t}, −∞ < t < ∞,

make a foliation of Ω. This means that Ω is a disjoint union of leaves and
finitely many critical points of log |h|. Leafs are the curves on which |h(z)|
is constant; these curves are either simple closed curves (ordinary leaves)
or simple open curves with both ends at singular points (singular leaves).
Foliations are considered here as topological objects: up to homeomorphisms
which respect leaves.

Notice that unlike the developing map h, the function u = log |h| is a
well-defined (single-valued) harmonic function. Level sets Lt which contain
singular points are called critical level sets. A non-critical level set consists
of finitely many ordinary leaves, while a critical level set may contain both
ordinary and singular leaves and some critical points.

The region Ω is a disjoint union of open foliated cylinders and critical
level sets. A model foliated cylinder is obtained by taking a rectangle in the
plane foliated into horizontal segments and identifying its vertical sides in
the natural way. An open foliated surface homeomorphic to such a cylinder,
by a homeomorphism respecting the foliation is called a foliated cylinder.

Every singular point in Ω is a saddle point of u and it has an index: a
positive integer k such that the singular leaves in a neighborhood of this
point look like the 2(k + 1) intervals of the set {z : |z| < 1, Re zk+1 = 0}
meeting at 0. This is because our function u is harmonic.
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Our foliation has an additional structure: there are two functions on the
set of leaves: one is the height t, another is the length of a leaf with respect
to the intrinsic metric ρ. For a leaf γ ⊂ Lt the height is t. The length of a
leaf γ is a positive number which can be computed by the formula

|γ| =

∫

γ

∣
∣
∣
∣

∂u

∂n

∣
∣
∣
∣
|dz|, u(z) = log |h(z)|,

where n is the unit normal to γ. The same formula defines the length of any
arc of a leaf.

Suppose that an interval (t′, t′′) contains no critical values of u. For t ∈
(t′, t′′), let γt ⊂ Lt be a leaf which depends continuously on t. (Convergence
of leaves which is used here is uniform, using some parametrization).

Then the length |γt| does not depend on t.
This follows from Green’s formula applied to u in the ring between γt1

and γt2 where t1, t2 are any numbers between t′ and t′′.
When t passes through a critical value, some leaves break into singular

leaves and then these singular leaves re-assemble into new ordinary leaves.
More precisely, let (t′, t′′) be as above, and suppose that t′ is a singular

value. Choose a leaf γt ∈ Lt which depends continuously on t for t ∈ (t′, t′′).
Then as t → t′+ some parametrization of γt converges uniformly to a closed
curve, which can be an ordinary leaf, or a finite union of singular leaves
γj ⊂ Lt′ and singular points. Moreover, we have

|γt| =
∑

j

|γj|, (22)

where the summation is over all those leaves which form the limit of γt, and
all summands in the right hand side are strictly positive.

Relations (22) form a system of linear equations which the lengths of
leaves of a given topological foliation must satisfy, assuming that the lengths
of ordinary leaves do not change with height.

3. From foliations with height and length back to flat surfaces.

Suppose now that Ω is a topological punctured sphere with a topological
foliation whose leaves are level sets of some smooth function v : Ω → R with
finitely many critical points, and v(z) → ±∞ when z tends to a puncture,
and
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a) In a neighborhood of each critical point v is topologically equivalent to a
harmonic function.

Suppose further that a strictly positive function φ on the set of leaves is
given which has the formal properties of the length function, namely:

b) If γt ⊂ Lt is a family of ordinary leaves continuously depending on t ∈
(t′, t′′) on an interval containing no critical values, then φ(γt) is constant on
(t′, t′′).

c) If t′ is a singular value, and γt is the same as in b), and γt tends to the
union of singular leaves ∪jγ

j as t → t′, we have

φ(γt) =
∑

j

φ(γj). (23)

We claim that whenever such a foliation and functions t and φ on the
leaves are given, one can introduce a flat metric on Ω whose developing map
h has the property that the level sets of v = log |h| define our given foliation.
and the function φ is the length of the leaves of this foliation. The flat metric
defines on Ω the conformal structure of a punctured sphere.

To prove the claim, we consider the partition of Ω into foliated cylinders
Cj and critical level sets as described in part 2 of the proof. Each cylinder
is mapped by v into a maximal interval (t′, t′′) free of critical values of v.
In the trivial case when there are no critical points at all, we have (t′, t′′) =
(−∞,∞). In all other cases there are two such semi-infinite intervals and
finitely many finite intervals.

Each foliated cylinder Cj is homeomorphic to the product γj × (t′, t′′),
where γj is an ordinary leaf in Lt for some t ∈ (t′, t′′). We pull back to Cj

the standard Euclidean metric from this product, so that |γj| = φ(γj). This
defines the flat metric ρ on the cylinders of the foliation. Some of them are of
finite height, others semi-infinite, except the trivial case when there is only
one doubly-infinite cylinder.

Let Cj be completions of the Cj with respect to their metrics. The bound-
ary circles of Cj correspond to some leaves of the foliation on the singular
level sets, and some finite sets of points on each boundary circle must be
glued together into singular points. So we break every boundary circle into
arcs which will correspond to the singular leaves. The lengths of these arcs
are determined by our function φ, and this is where relation (23) is used.
Then we glue together our cylinders along these arcs respecting the length.
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To perform this gluing we use the theorem of Aleksandrov and Zalgaller, see,
for example [11, Thm. 8.3.2], about gluing two surfaces along a geodesic arc.
It guarantees that we obtain a “surface of bounded curvature” in the sense
of Aleksandrov, with a flat metric and finitely many conic singular points.
(This is a surface of special kind which is called a polyhedral surface in [11]).
The total angle at a singularity is equal to one half of the number of boundary
points of cylinders which are glued together at this point.

That the resulting surface is connected and of genus 0 is guaranteed by
the topology of the foliation. For a given foliation, the only condition for the
possibility of this gluing is the linear relations (23) between the lengths of
the leaves.

4. Conclusion of the proof of Theorem 2.

Suppose that the vector c has p positive and r negative coordinates, p+r =
q. Take a q-punctured sphere Ω, and construct a function v : Ω → R which
tends to −∞ at p punctures of Ω and to +∞ at the remaining r punctures.
Moreover, we require that all critical points of v in Ω are saddle points of
the topological types which are possible for harmonic functions, and the
multiplicities of these critical points are the parts of the partition P .

Lemma. For every p, r and P there exists a function v with these properties.

Postponing the proof of the Lemma, we complete the proof of Theorem 2.
Consider all foliations defined by functions v satisfying our conditions

with fixed p, r, P . To assign a length function φ consistent with a foliation,
we have to solve the system of equations (23) which is determined by the
foliation. In this system, the given numbers are the girths of the semi-infinite
cylinders (these are our |cj|), and the unknown variables are the girths of all
finite height cylinders and the lengths of the singular leaves.

In addition to (23), we have the restriction that all girths and lengths
must be strictly positive.

If this linear system has a strictly positive solution, we can construct
our metric by performing steps described in parts 3 and 1. If not, a metric
corresponding to this particular foliation does not exist.

We give an illustrating example. Suppose we want to construct a function
g as in (16) with two positive residues a, b, two negative residues −c,−d and
a single critical point where the local degree of h is 3. Then the critical level
set must have the form as in Fig. 1, where the regions represent semi-infinite
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Figure 1: A critical level set.

cylinders, the dots labeled a, b are the poles of h, and the dots labeled c, d
are zeros of h. The girths of the four cylinders are 2πa, 2πb, 2πc, 2πd and the
length of the three singular leaves are 2πb, 2πd, and 2πx (see Fig. 1). Non-
singular leaves of the foliation are not shown in the picture, each of them is
a Jordan curve that surrounds the puncture in its cylinder. Equations (23)
for this case are

a = x+ d, c = x+ b,

which are consistent if and only if a− d+ b− c = 0. Now x must be strictly
positive, so we obtain necessary and sufficient conditions of existence of such
g: a > d and c > b, in other words, the positive residues must be unequal
and negative residues must be unequal. This explains examples 1,2 above.

In any case, the condition that a vector c is P -admissible is stated in
terms of linear equations and linear inequalities with integer coefficients and
Boolean operations. So P -exceptional vectors c form a rational polyhedron
in RPq−2. If this polyhedron is infinite, then it contains infinitely many
rational points [4], which is not the case: we have seen that there are only
finitely many P -exceptional rational vectors for each given P (see Remark
1). So the polyhedron is finite. So it consists of only rational points.

This completes the proof of Theorem 2.

5. Proof of Lemma 1.

It is sufficient to prove the lemma for the special case when there is only
one critical point. Then it can be broken into pieces according to partition
P by a perturbation, as shown in the first three lines of figure 2. In lines 1-3,
on the left hand side we have a critical point of multiplicity 4. In lines 1 and
2 it is broken to two critical points of multiplicity 2, in line 3 it is broken
into one critical point of multiplicity 2 and two critical points of multiplicity
1. A foliation with one critical point is defined by its critical level set, say
v(z) = 0, and by assigning a black or white color to the components of the
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Figure 2: Black and white regions represent semi-infinite cylinders, numbers
on the left are (p, r), and the arrows arrows show breaking a high multiplicity
critical point into critical points of the lower multiplicity.
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complement according to the sign of v. Instead of describing these foliations
in words we just present pictures of their critical level sets in Fig. 2 . Each
black or white region represents a semi-infinite cylinder with one puncture
inside. Numbers (p, r) are written on the left. We start with (p, 1), a flower
with p petals, and then pass to (p − 1, 2), (p − 2, 3) etc, as shown in the
picture.

Proof of Theorem 1.

Necessity of conditions (5), (6) has been already explained, and sufficiency
of (5), (6) and (8) follows from Theorem 2. It remains to prove the necessity
of (8). It is necessary that (8) is satisfied for some arrangement. We have to
prove that it is enough to check it only for one reduced arrangement.

Suppose that α is a multiset satisfying Condition 1. We claim that if it
is admissible, then there exists a metric with these angles corresponding to
some reduced arrangement. Indeed if there are singular points with integer
angles for which the developing map takes the values 0 or ∞, then one can
find another metric with co-axial monodromy with the same angles for which
the developing map does not take the values 0 or ∞ at the singular points
with integer angles. This follows from a general argument which permits to
“move around” a singular point with integer angle.

Let f : S → C be the developing map of a surface of curvature 1 with
conic singularities, and suppose that a ∈ S is a singular point with integer
angle α. Let r > 0 be smaller than the distance from a to other singular-
ities, and such that the closed intrinsic disk D of radius r centered at a is
homeomorphic to a closed disk in the plane.

We will remove the interior of D from S, and paste S\intD with a new
surface C homeomorphic to a closed disc in the plane, equipped with a metric
of the same constant curvature, having one singularity in the interior with
the same angle α. This can be so arranged that the distance in C from the
singularity to ∂C is any positive number less than r, and the closest point
to the singularity on ∂C is any given point of ∂C. So we have a continuous
family of deformations. Moreover, the resulting surface S ′ = C∪(S\intD) is
smooth, and has constant curvature except at the conic singularities in S\D
and in C.

Consider the disk U = {z : |z| < R}, R = tan(r/2)} equipped with the
standard spherical metric ρ. (The spherical radius of this disk is r.) Let
C = {z : |z| ≤ R1/α} equipped with the metric ρ1 = f ∗ρ, where f(z) = zα.
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Let D = {z : |z| ≤ R1/α} equipped with the metric ρ2 = g∗ρ, where

g(z) = R
zα + aR

1 + azα
,

where |a| < 1. Consider the annulus B ⊂ U , B = {z : t < |z| < R}
where t ∈ (R|a|, R), and let denote A1 = f−1(B), A2 = g−1(B). Then the
metric spaces (A1, ρ1) ⊂ D and A2 ⊂ C are isometric, because they are
both isometric to the covering of B of degree α. So we can remove from our
surface S a disk isometric to D and glue in C instead. The parameter of
deformation is a. Notice that this deformation is isomonodromic, does not
change the monodromy group.

This explains why the necessary condition (8) in Theorem 1 is enough
to verify for reduced arrangements: we can always perturb a co-axial met-
ric and obtain another co-axial metric with the same angles and reduced
arrangement.

Now we notice, that if some reduced arrangement satisfies (8) of Theorem
1, then all other reduced arrangements for the same multiset of angles will
also satisfy (8), because q and

∑
|bj| are the same for all reduced arrange-

ments. Indeed, m and

q = m+ k′ + k′′ =
n∑

j=m+1

(αj − 1) + 2,

depend only on α, and bj depend only on non-integer angles in α and on
k = k′ + k′′. This proves necessity of condition (8) and completes the proof
of Theorem 1.

Remark 2. A similar deformation of a singularity with non-integer angle
is impossible. Consider, for example a “football”, the sphere with a metric
of curvature 1 and two conic singularities. The singularities of such surface
must have equal angles, and for each angle there is such a surface. But
if the angle is non-integer, then a football is unique, while with an integer
angle there is a 1-parametric family of footballs [13]. What was used in our
argument is that the developing map is single-valued in a neighborhood of a
singularity with integer angle.

Remark 3. If α is an admissible multiset, there exists a metric of positive
curvature with angles α. But the conformal class of this metric cannot be
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arbitrarily assigned. Take for example α = (α1, . . . , αn) where αn = n − 2,
the rest of the angles are not integers and

n−1∑

j=1

αj = 0.

Compare Example 2 above. The developing map satisfies

f ′(z)

f(z)
=

n−1∑

j=1

±αj

z − zj
,

and the right hand side must have a zero of multiplicity n− 3. This imposes
n − 4 conditions on the poles zj. Indeed, we may assume without loss of
generality that z1 = 0, z2 = 1, so we obtain n − 4 conditions on n − 3
variables zj which suggests that there is only a one-dimensional family of
conformal classes of such metrics.

Similar phenomenon may occur when all angles are non-integer. Lin
and Wang [8] studied a problem which is equivalent to description of met-
rics of positive curvature on the sphere with four singularities with angles
(1/2, 1/2, 1/2, 3/2). The conformal type of these metrics depends on one
complex parameter, and it turns out that the moduli space of quadruply
punctured spheres is split into two parts, each with non-empty interior, such
that for one part a metric with these angles exists and for the other part it
does not. In all these examples the angles are very special. The results in
[1, 3] suggest that perhaps for generic angles satisfying (2) and (3) a metric
of curvature 1 exists in prescribed conformal class of the punctured sphere.

The author thanks Andrei Gabrielov, Michael Kapovich, Dmitry Novikov,
Carlo Petronio and Vitaly Tarasov for helpful discussions.
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