CS 593/MA 592 - Intro to Quantum Computing Spring 2024 Tuesday, March 19 - Lecture 10.1

Today's scribe: Linkai Ma [Note: note proofread by Eric]

Reading: Chapter 5.3 & Appendix 4 of Nielsen and Chuang, Chapter 13 & Appendix A of Kitaev, Shen and Vyalyi

Agenda:

1. Simon's algorithm

1 Simon's Problem

Simon's problem is an important predecessor of Shor's algorithm, which generalizes to Bernstein-Vazirani and Deutsch-Jozsa. It can be futher generalized to the hidden subgroup problem. It gives an oracle separation of BQP and BPP.

Input: (Quantum) oracle access to a funciton $F = F_s$

$$F: \{0,1\}^n = (\mathbb{Z}/2\mathbb{Z})^n \longrightarrow \{0,1\}^n$$

such that $F(x) = F(y)$ if and only if $x = y \oplus s$

Note that \oplus is the group operation on $(\mathbb{Z}/2\mathbb{Z})^n$, which is bitwise addition mod 2.

Output: s

Remark. 1. In the problem statement, the group structure on the domain of *F* is important. However, group structure on the codomain is not important.

2.

$$< s >= \{0, s\} \cong \begin{cases} \{0\} \ if \ s = 0 \\ \mathbb{Z}/2\mathbb{Z} \ if \ s \neq 0 \end{cases}$$

So, we can interpret F as a function on $(\mathbb{Z}/2\mathbb{Z})^n$ that is "hiding" the subgroup $\langle s \rangle \subseteq (\mathbb{Z}/2\mathbb{Z})^n$.

3. Another interpretation: F is a periodic function on $(\mathbb{Z}/2\mathbb{Z})^n$ with "periodicity" given by s.

In the quantum version of the problem, we will assume as usual that we have quantum oracle access to F via unitary dilation.

$$U_F : (\mathbb{C}^2)^{\otimes n} \otimes (\mathbb{C}^2)^{\otimes n} \longrightarrow (\mathbb{C}^2)^{\otimes n} \otimes (\mathbb{C}^2)^{\otimes n}$$
$$|x, y\rangle \longmapsto |x, F(x) \oplus y\rangle$$

	х	$F_s(x)$
	000	000
	001	001
	010	010
Example : $n = 3, s = 101$	011	011
	100	001
	101	000
	110	011
	111	010

Proposition 1. For any classical probabilistic algorithm making no more than $2^{\frac{n}{2}}$ many queries to the oracle, there exists an $s \in \{0,1\}^n$ and a Simon oracle F_s for that s for which the algorithm fails to return the correct s with probability $\geq \frac{1}{3}$.

Thus, any classical probabilistic algorithm requires time at least $2^{\frac{n}{2}}$ to find *s* (with good confidence). In fact $\Theta(2^{\frac{n}{2}})$ orcale access is enough to confidently identify *s* classically.

Naively, one might expect to need 2^n , but the birthday paradox gets us down to $2^{\frac{n}{2}}$.

Idea for classical algorithm:

Randomly pick two bit string $x, y \in \{0, 1\}^n$ and hope for a collision, i.e., hope that F(x) = F(y). If this happens and $x \neq y$, then $s = x \oplus y$. We can use the birthday paradox to show this can be made to work with high confidence as long as we make at least $2^{\frac{n}{2}}$ queries.

Issue:

How do we know that being "unlucky" a lot (finding no collisions) can not be used to deduce something helpful about *s*.

Idea of proof:

Need to fix a classical probabilistic algorithm first.

Then it suffices to find a single s and F_s such that the algorithm fails on that F_s with probability $\geq \frac{1}{3}$.

Pick *s* "cleverly" and consider a randomly chosen oracle for that *s*(there are exponentially many). Now argue that the probability that the algorithm fails for a random oracle $\geq \frac{1}{3}$.

Deduce that there must exist at least one "actual" orcale F_s for which the algorithm fails with probability $\geq \frac{1}{3}$.

Simon's algorithm solves Simon's problem (quantum version) using O(n) calls to the oracle with time $O(n^3)$. Given $s \in \{0,1\}^n = (\mathbb{Z}/2\mathbb{Z})^n$, define $\langle s \rangle^{\perp} = \{x \in (\mathbb{Z}/2\mathbb{Z})^n : x \cdot s = 0 \mod 2\}$.

Note: $\langle s \rangle^{\perp}$ determines *s*.

Given g_1, \dots, g_l such that $\langle g_1, \dots, g_l \rangle = \langle s \rangle^{\perp}$, then the linear system

$$g_1 \cdot z = 0 \mod 2$$
$$g_2 \cdot z = 0 \mod 2$$
$$\dots$$
$$g_l \cdot z = 0 \mod 2$$

has a unique solution given by z = s.

This linear system can be solved in time $O(l^3)$. Thus to find *s*, it suffices to find g_1, \dots, g_l that generates $\langle s \rangle^{\perp}$, where l = O(poly(n)).

To find generators of $\langle s \rangle^{\perp}$, we are going to use U_F and a similar procedure to previous algorithms.

Lemma 2. The output y of the first register in above circuit is uniformly randomly chosen element of $\langle s \rangle^{\perp}$.

Intuition: quantum oracle access to F_s allows us to uniformly randomly sample from $\langle s \rangle^{\perp}$. Using this and the following lemma, we can find g_1, \dots, g_l such that $\langle g_1, \dots, g_l \rangle = \langle s \rangle^{\perp}$ without too much work and with high probability.

Lemma 3. Let G be a finite abelian group and let g_1, \dots, g_l be uniformly randomly independent chosen elements of G, then:

$$\mathbb{P}(\langle g_1, \cdots, g_l \rangle = G) \ge 1 - \frac{|G|}{2^l}$$

Remark. If G is not abelian, replace |G| with the number of maximal subgroups of G.

2 Simon's Algorithm

- 1. Choose *l* so that $1 \frac{2^n}{2^l} \ge \frac{1}{3}$. Clearly l = O(n) suffices.
- 2. Use *l* calls to U_F (can do this in parallel) to get g_1, \dots, g_l , which are uniformly randomly sampled elements of $\langle s \rangle^{\perp}$.
- 3. Classically solve the linear system $\{g_i \cdot z = 0 \mod 2 | i = 1, \cdots, l\}$

Proof of lemma ??:

Let's compute the state we get before measuring:

$$(H^{\otimes n} \otimes Id) \circ U_F \circ (H^{\otimes n} \otimes Id) (|0 \cdots 0\rangle \otimes |0 \cdots 0\rangle)$$

= $(H^{\otimes n} \otimes Id) \circ U_F \left(\sum_{x \in (\mathbb{Z}/2\mathbb{Z})^n} 2^{-\frac{n}{2}} |x\rangle \otimes |0 \cdots 0\rangle\right)$
= $(H^{\otimes n} \otimes Id) \left(2^{-\frac{n}{2}} \sum_{x \in (\mathbb{Z}/2\mathbb{Z})^n} |x\rangle \otimes |F(x)\rangle\right)$
= $2^{-n} \sum_{x,y \in (\mathbb{Z}/2\mathbb{Z})^n} (-1)^{x \cdot y} |y\rangle |F(x)\rangle$

if $s \neq 0$, then for each $x \in (\mathbb{Z}/2\mathbb{Z})^n$, $\#F^{-1}(F(x)) = 2$. So, if $z \in Range(F)$, then $F^{-1}(z) = \{x_{z,1}, x_{z,2}\} = \{x_{z,1}, x_{z,1} \oplus s\}$

Using this for each $y \in \{0,1\}^n$, the probability of measuring y is

$$\begin{split} \mathbb{P}(\mathbf{y}) &= ||\sum_{x \in (\mathbb{Z}/2\mathbb{Z})^n} 2^{-n} (-1)^{x \cdot \mathbf{y}} |F(\mathbf{x})\rangle \, ||^2 \\ &= ||\sum_{z \in Rnage(F)} \sum_{x \in F^{-1}(z)} 2^{-n} (-1)^{x \cdot \mathbf{y}} |z\rangle \, ||^2 \\ &= 2^{-2n} \sum_{z \in Rnage(F)} ||(-1)^{x_{z,1} \cdot \mathbf{y}} |z\rangle + (-1)^{x_{z,2} \cdot \mathbf{y}} |z\rangle \, ||^2 \\ &= 2^{-2n} \sum_{z \in Rnage(F)} |1 + (-1)^{s \cdot \mathbf{y}}|^2 \\ &= \begin{cases} 0 & \text{if } s \cdot \mathbf{y} = 1 \mod 2 \\ \frac{1}{||} & \text{if } s \cdot \mathbf{y} = 0 \mod 2 \end{cases} \end{split}$$