CS 593/MA 592 - Intro to Quantum Computing Spring 2024
 Tuesday, March 19 - Lecture 10.1

Today's scribe: Linkai Ma [Note: note proofread by Eric]
Reading: Chapter 5.3 \& Appendix 4 of Nielsen and Chuang, Chapter 13 \& Appendix A of Kitaev, Shen and Vyalyi

Agenda:

1. Simon's algorithm

1 Simon's Problem

Simon's problem is an important predecessor of Shor's algorithm, which generalizes to Bernstein-Vazirani and DeutschJozsa. It can be futher generalized to the hidden subgroup problem. It gives an oracle separation of BQP and BPP.

Input: (Quantum) oracle access to a funciton $F=F_{S}$

$$
F:\{0,1\}^{n}=(\mathbb{Z} / 2 \mathbb{Z})^{n} \longrightarrow\{0,1\}^{n}
$$

such that $F(x)=F(y)$ if and only if $x=y \oplus s$
Note that \oplus is the group operation on $(\mathbb{Z} / 2 \mathbb{Z})^{n}$, which is bitwise addition mod 2 .
Output: s

Remark. 1. In the problem statement, the group structure on the domain of F is important. However, group structure on the codomain is not important.
2.

$$
<s>=\{0, s\} \cong\left\{\begin{array}{l}
\{0\} \text { if } s=0 \\
\mathbb{Z} / 2 \mathbb{Z} \text { if } s \neq 0
\end{array}\right.
$$

So, we can interpret F as a function on $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ that is "hiding" the subgroup $<s>\subseteq(\mathbb{Z} / 2 \mathbb{Z})^{n}$.
3. Another interpretation: F is a periodic function on $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ with "periodicity" given by s.

In the quantum version of the problem, we will assume as usual that we have quantum oracle access to F via unitary dilation.

		$U_{F}:(\mathbb{C}$	$\left.\mathbb{C}^{2}\right)^{\otimes n} \longrightarrow\left(\mathbb{C}^{2}\right)^{\otimes n} \otimes\left(\mathbb{C}^{2}\right)^{\otimes n}$
			$\|x, y\rangle \longmapsto\|x, F(x) \oplus y\rangle$
	x	$F_{s}(x)$	
	000	000	
	001	001	
	010	010	
Example: $n=3, s=101$	011	011	
	100	001	
	101	000	
	110	011	
	111	010	

Proposition 1. For any classical probabilistic algorithm making no more than $2^{\frac{n}{2}}$ many queries to the oracle, there exists an $s \in\{0,1\}^{n}$ and a Simon oracle F_{s} for that sfor which the algorithm fails to return the corrects with probability $\geq \frac{1}{3}$.

Thus, any classical probabilistic algorithm requires time at least $2^{\frac{n}{2}}$ to find s (with good confidence). In fact $\Theta\left(2^{\frac{n}{2}}\right)$ orcale access is enough to confidently identify s classically.

Naively, one might expect to need 2^{n}, but the birthday paradox gets us down to $2^{\frac{n}{2}}$.
Idea for classical algorithm:
Randomly pick two bit string $x, y \in\{0,1\}^{n}$ and hope for a collision, i.e., hope that $F(x)=F(y)$. If this happens and $x \neq y$, then $s=x \oplus y$. We can use the birthday paradox to show this can be made to work with high confidence as long as we make at least $2^{\frac{n}{2}}$ queries.
Issue:
How do we know that being "unlucky" a lot (finding no collisions) can not be used to deduce something helpful about s.
Idea of proof:
Need to fix a classical probabilistic algorithm first.
Then it suffices to find a single s and F_{s} such that the algorithm fails on that F_{s} with probability $\geq \frac{1}{3}$.
Pick s "cleverly" and consider a randomly chosen oracle for that s (there are exponentially many). Now argue that the probability that the algorithm fails for a random oracle $\geq \frac{1}{3}$.

Deduce that there must exist at least one "actual" orcale F_{s} for which the algorithm fails with probability $\geq \frac{1}{3}$.
Simon's algorithm solves Simon's problem (quantum version) using $O(n)$ calls to the oracle with time $O\left(n^{3}\right)$.
Given $s \in\{0,1\}^{n}=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, define $<s>^{\perp}=\left\{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}: x \cdot s=0 \bmod 2\right\}$.
Note: $\langle s\rangle^{\perp}$ determines s.
Given g_{1}, \cdots, g_{l} such that $\left.<g_{1}, \cdots g_{l}\right\rangle=<s>^{\perp}$, then the linear system

$$
\begin{aligned}
& g_{1} \cdot z=0 \bmod 2 \\
& g_{2} \cdot z=0 \bmod 2 \\
& \ldots \\
& g_{l} \cdot z=0 \bmod 2
\end{aligned}
$$

has a unique solution given by $z=s$.
This linear system can be solved in time $O\left(l^{3}\right)$. Thus to find s, it suffices to find g_{1}, \cdots, g_{l} that generates $<s>^{\perp}$, where $l=O(\operatorname{poly}(n))$.

To find generators of $\left\langle s>^{\perp}\right.$, we are going to use U_{F} and a similar procedure to previous algorithms.

Lemma 2. The output y of the first register in above circuit is uniformly randomly chosen element of $<s>^{\perp}$.
Intuition: quantum oracle access to F_{s} allows us to uniformly randomly sample from $<s>^{\perp}$. Using this and the following lemma, we can find g_{1}, \cdots, g_{l} such that $\left.\left\langle g_{1}, \cdots g_{l}\right\rangle=<s\right\rangle^{\perp}$ without too much work and with high probability.
Lemma 3. Let G be a finite abelian group and let g_{1}, \cdots, g_{l} be uniformly randomly independent chosen elements of G, then:

$$
\mathbb{P}\left(<g_{1}, \cdots, g_{l}>=G\right) \geq 1-\frac{|G|}{2^{l}}
$$

Remark. If G is not abelian, replace $|G|$ with the number of maximal subgroups of G.

2 Simon's Algorithm

1. Choose l so that $1-\frac{2^{n}}{2^{l}} \geq \frac{1}{3}$. Clearly $l=O(n)$ suffices.
2. Use l calls to U_{F} (can do this in parallel) to get g_{1}, \cdots, g_{l}, which are uniformly randomly sampled elements of $<s>^{\perp}$.
3. Classically solve the linear system $\left\{g_{i} \cdot z=0 \bmod 2 \mid i=1, \cdots, l\right\}$

Proof of lemma ??:

Let's compute the state we get before measuring:

$$
\begin{aligned}
& \left(H^{\otimes n} \otimes I d\right) \circ U_{F} \circ\left(H^{\otimes n} \otimes I d\right)(|0 \cdots 0\rangle \otimes|0 \cdots 0\rangle) \\
& =\left(H^{\otimes n} \otimes I d\right) \circ U_{F}\left(\sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}} 2^{-\frac{n}{2}}|x\rangle \otimes|0 \cdots 0\rangle\right) \\
& =\left(H^{\otimes n} \otimes I d\right)\left(2^{-\frac{n}{2}} \sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}}|x\rangle \otimes|F(x)\rangle\right) \\
& =2^{-n} \sum_{x, y \in(\mathbb{Z} / 2 \mathbb{Z})^{n}}(-1)^{x \cdot y}|y\rangle|F(x)\rangle
\end{aligned}
$$

if $s \neq 0$, then for each $x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}, \# F^{-1}(F(x))=2$. So, if $z \in \operatorname{Range}(F)$, then $F^{-1}(z)=\left\{x_{z, 1}, x_{z, 2}\right\}=\left\{x_{z, 1}, x_{z, 1} \oplus\right.$ $s\}$

Using this for each $y \in\{0,1\}^{n}$, the probability of measuring y is

$$
\begin{aligned}
\mathbb{P}(y) & =\| \sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}} 2^{-n}(-1)^{x \cdot y}|F(x)\rangle \|^{2} \\
& =\| \sum_{z \in \operatorname{Rnage}(F)} \sum_{x \in F^{-1}(z)} 2^{-n}(-1)^{x \cdot y}|z\rangle \|^{2} \\
& =2^{-2 n} \sum_{z \in \operatorname{Rnage}(F)} \|(-1)^{x_{z, 1} \cdot y}|z\rangle+(-1)^{x_{z, 2} \cdot y}|z\rangle \|^{2} \\
& =2^{-2 n} \sum_{z \in \operatorname{Rnage}(F)}\left|1+(-1)^{s \cdot y}\right|^{2} \\
& = \begin{cases}0 & \text { if } s \cdot y=1 \bmod 2 \\
\frac{1}{\left|\left\langle s^{\perp}\right\rangle\right|} & \text { if } s \cdot y=0 \bmod 2\end{cases}
\end{aligned}
$$

