
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Tuesday, March 19 - Lecture 10.2
Today’s scribe: Aaron [Note: note proofread by Eric]

1 Factoring and Friends
Prime Factorization Problem.
INPUT = A positive integer N expressed in binary.
OUTPUT = A prime factorization of N, i.e. a list of positive integers p1, ..., pm and a1, ...am, again expressed in binary,
such that p1, ..., pm are distinct primes and N = pa1

1 ...pam
m .

Note. If N were expressed in unary then its expression would have length N, and prime factorization could be done in
poly-time by only trial division. As is, the size of N is the number of bits, L = ⌊log2 N⌋+1, and trial division would
not be polynomial in L.

Prime Factorization is essentially equivalent to the following more general problem.

Factorization Problem.
INPUT = N as before.
OUTPUT = Either an integer a in binary (1 < a < N) such that a divides N (we say a is a nontrivial factor of N), or
the statement ”N is prime.”

Prime Factorization can be performed by recursively calling the Factorization problem and dividing out by the
results, which only has to be done polynomially-many times in L. Contrast this with primality testing.

Primality Testing.
INPUT = N as above
OUTPUT = YES if N is prime, NO otherwise.

Primality Testing has an efficient classical algorithm. Miller-Rabin placed it in BPP (1980) prior to Shor’s algo-
rithm, while Agrawal-Kayal-Saxena devised a deterministic algorithm (2000). However, the Factorization Problem has
no known classically-efficient algorithm. The best known algorithm, the Number Field Sieve, runs sub-exponentially
but super-polynomially with run-time O(2

3√L). Quantumly, though...

Theorem (Shor). Factoring can be done (with bounded error) in quantum-polynomial time.

The algorithm is broken into two main procedures. We first reduce the problem of factoring to the problem of
order finding, which is the goal of this lecture. Shor then solved this problem in quantum polynomial time (which
we’ll elaborate on next lecture).

Order Finding.
INPUT = N as before, as well as another integer x, 1 < x < N, expressed in binary so that gcd(x,N) = 1.
OUTPUT = The order of x modulo N, i.e. the smallest positive integer r such that x4 ≡ 1 mod N.

Def. (Z/nZ)∗ = {x ∈ Z/NZ : gcd(x,N) = 1}
= {Multiplicative units in the ring Z/NZ}.

2 The Classical Part of Shor’s Algorithm
Given N we want to either identify N as prime or find a (nontrivial) factor. We will assume we have an oracle which
solves the order-finding problem.

Step 1. If N is even, output 2. (Since N is given in binary, this is very easy).

1



Step 2. If N = ab for some a,b ≥ 2, output a. (This takes O(L3) time, and is worked through in Ex 5.17 N-C).

Step 3. Uniformly-randomly pick an integer x with 2 < x < N. Use the Euclidean algorithm (O(L3)) to compute
gcd(x,N). If this is > 1, output gcd(x,N).

Step 4. Now gcd(x,N) = 1. Use the aforementioned oracle to compute the order of x mod N. Call it r.

Step 5. If r is odd, return to step 3 (pick a new x).
Alternate Step 5’. If r is odd, output ”N is prime.” This does introduce some error, but we’ll prove later that this guess
is ”usually” correct.

Step 6. Now r is even. If xr/2 ̸≡ −1 mod N, then one of gcd(xr/2 +1,N),gcd(xr/2 −1,N) is a nontrivial factor of N
(will justify this shortly). Check which one and output it.

Step 7. If xr/2 ≡−1 mod N, return to step 3.
Alternate Step 7’. If xr/2 ≡−1 mod N, output ”N is prime.” Again, we’ll show this guess is usually correct.

That this works hinges upon two technical results.

Prop 1. Suppose N is a positive integer and y is a nontrivial solution to y2 ≡ 1 mod N with 1 < y < N − 1. Then
gcd(y+1,N) or gcd(y−1,N) is a nontrivial factor of N.

This justifies Step 6, taking y = xr/2.

Proof. If y2 ≡ 1 mod N, then by definition N divides y2 −1 = (y−1)(y+1). So either gcd(N,y−1) or gcd(N,y+1)
is > 1. Moreover, neither equals N since y < N −1.

2



Prop 2. Suppose N has prime factorization pa1
1 ...pam

m with each pi ̸= 2 and m ≥ 2. If x is a uniformly-randomly chosen
element of (Z/NZ)∗, then

P[r is even,xr/2 ̸≡ −1 mod N]≥ 1− 1
2m−1 .

This result justifies the alternative steps 5’ and 7’ (and since the algorithm is already probabilistic, there’s little
harm in relying on them). The proof relies on two basic facts of ring theory which we will give without proof.

Fact 1 (Chinese Remainder Theorem). If N factors as = q1...qm where the qi’s are pairwise coprime, then

Z/NZ∼= (Z/q1Z)× ...× (Z/qmZ).

In particular:

(Z/NZ)∗ ∼= (Z/q1Z)∗× ...× (Z/qmZ)∗.

Fact 2. If p is prime, then (Z/paZ)∗ ∼= Z/(pa−1(p−1))Z.

Combining these facts, we can express the unit group modulo N as a product of cyclic groups, as:

(Z/NZ)∗ ∼= Z/(pa1−1
1 (p1 −1))Z×Z/(pam−1

m (pm −1))Z.

We ran out of time for finishing the proof of 2, we’ll probably do that next lecture.

3


