CS 593/MA 592 - Intro to Quantum Computing Spring 2024 Tuesday, March 26 - Lecture 11.1

Today's scribe: Runwei Zhou [Note: note proofread by Eric]

Agenda:

- 1. Continued fractions
- 2. Shor's order
- 3. Finding algorithm
- 4. Time-permitting: finishing up the last lecture

1 Continued Fractions

An example of infinite ctd fraction is:

$$x = \frac{1}{5 + \frac{1}{5$$

Every real number admits a more or less unique ctd fraction representative. A real number is rational if and only if it has a finite ctd fraction representative.

Definition.

$$[a_0, a_1, \cdots, a_N] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_N}}}}$$
(2)

The *n*th convergent is the "truncated" continued fraction $[a_0, a_1, \dots, a_N]$.

Theorem 1. Given a rational number x expressed as a binary fraction with L bits, we can find a continued fraction presentation of x in (classical) poly time $O(L^3)$

For example, we have:

$$\frac{77}{65} = 1 + \frac{12}{65} = 1 + \frac{1}{\frac{65}{12}} = 1 + \frac{1}{5 + \frac{5}{12}} = \dots = 1 + \frac{1}{5 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}} = [1, 5, 2, 2, 2]$$
(3)

Theorem 2. Let x be any real number, and suppose $\frac{p}{q}$ is a rational number such that

$$\left\|\frac{p}{q} - x\right\| \le \frac{1}{q^2} \tag{4}$$

Then $\frac{p}{q}$ is a convergent of any continued fraction representation of x

Among all rational approximations to x with a given denominator q, the best ones come from the convergence of the combined fraction representation of x. In particular, if x is a binary fraction. These "best approximations" can be formed in time $O(L^3)$.

2 Shor's Order Finding Algorithm

Definition (Order-Finding problem). The input and output of order-finding problem is:

INPUT: two integrers N (with L bits), x written in binary with $1 \le x \le N$, gcd(x, N) = 1.

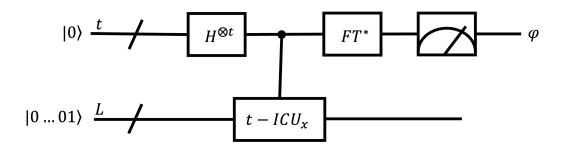
OUTPUT: r, the order of x mod N, i.e. smallest $r \ge 1$ such that $x^r = 1 \mod N$.

We can define $U_x : (\mathbb{C}^2)^{\otimes 2} \to (\mathbb{C}^2)^{\otimes 2}$ by:

$$U_{x}|y\rangle = \begin{cases} |xy \mod N\rangle \text{ if } 0 \le y \le N-1\\ |y\rangle \quad \text{else} \end{cases}$$
(5)

We hope to find U_x who encodes the fraction $\mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/N\mathbb{Z}$, $y \to xy$.

We will find order *r* by applying phase estimation to U_x (In following, $t = 2L + 1 + [\log(2 + \frac{1}{\epsilon})]$ will ensure phase estimation returns best 2L + 1 bit approximation to a phase with high confidence).



Two issues must be addressed:

- 1. How to build a quantum circuit for $t ICU_x$?
- 2. How can we identify and prepare a/an (eigen) state of U_x such that running phase estimation on it will return a φ that tells us something useful about *r*?

Here are the corresponding answers:

- 1. Modular exponentiation trick. This is "easy" but it is the step that is most painful part of Shor's algorithm. It will require aquatum circuit that uses $O(L^3)$ gates.
- 2. Eigenfunctions of U_x are fairly straight forward. Use continued factions to extract r from φ .

2.1 More on modular exponetiation

So what does $I - ICU_x$ do?

Write $z = z_t z_{t-1} \cdots z_1$ and let $y \in \mathbb{Z}/N\mathbb{Z}$, so y is a bit string of length L with $0 \le y \le N-1$.

$$t - ICU_{x}|k, y\rangle = |z, U_{x}^{z_{t}2^{t-1}}U_{x}^{z_{t-1}2^{t-2}}\cdots U_{x}^{z_{1}2^{0}}y\rangle$$

= $|z, x^{z_{t}2^{t-1}}x^{z_{t-1}2^{t-2}}\cdots x^{z_{1}2^{0}}y\rangle$
= $|z, x^{z}y\rangle$ (6)

So that $t - ICU_x$ multiplies contents of second register (i.e. y) by a power of x with the power determined by contents of first register (i.e. z)

Definition (Modular exponentiation trick). *Given x, N(N has L bits,* $1 < x \le N$), one can compute the function

$$z \leftarrow x^z \mod N \tag{7}$$

Where z has O(L) *bits. Classically in time* $O(L^3)$

One can dilate a classical Boolean circuit into a unitary circuit in the "usual way" to get a circuit that implements $t - ICU_x$.

2.2 More details on eigenstates of U_x

$$|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \frac{-2\pi i s k}{r} |x^k \pmod{N}\rangle$$
(8)

Then $0 \le s \le r - 1$,

$$U_{x}|u_{>s}\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \frac{-2\pi i s k}{r} |x^{k+1} \pmod{N}\rangle$$

$$= \exp \frac{2\pi i s}{r} |U_{s}\rangle$$
(9)

Where do these formulas come from?

Let $H = \langle x \rangle \leq (\mathbb{Z}/N\mathbb{Z})^*$ be the finite cyclic group guaranteed by x (under multiplication). U_x is basically the same thing as specifying a representation:

$$\rho: H \to U(\mathbb{C}[\mathbb{Z}/N\mathbb{Z}]) \le (\mathbb{C}^2)^{\otimes 2} \tag{10}$$

Where $\rho^n |y\rangle = |hy \mod N\rangle$.¹

Running QPE with U_x and $|u_s\rangle$ returns φ , the best 2L+1 bit approximation to $\frac{s}{r}$ (with high probability) in particular $\|\frac{s}{r} - \varphi\| \le \frac{1}{2r^2}$. Thus, $\frac{s}{r}$ occurs as a convergent of the continued fraction representation of φ . We can find the continued fraction representation of φ in time $O(L^3)$ classically. So, as long as gcd(s, r) = 1, we can get r by finding among the demoninators of the convergence of φ .

2.3 Lost remaining problem

Now do we prepare the state $|u_s\rangle$ for some s that is coprime to r? WE CAN'T!

Because we don't already know r. Instead, we will plug in $|1\rangle = |1 \mod N\rangle = |0, 0, \dots, 0, 1\rangle$ (L bits) to QPF.

$$|1\rangle = \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |u_s\rangle \tag{11}$$

With this φ will be best 2L + 1 bit approximation to $\frac{s}{r}$ for s, a uniformly randomly chosen value in $0 \le s \le r + 1$.