CS 593/MA 592 - Intro to Quantum Computing Spring 2024
 Tuesday, March 26 - Lecture 11.1

Today's scribe: Runwei Zhou [Note: note proofread by Eric]

Agenda:

1. Continued fractions
2. Shor's order
3. Finding algorithm
4. Time-permitting: finishing up the last lecture

1 Continued Fractions

An example of infinite ctd fraction is:

$$
\begin{equation*}
x=\frac{1}{5+\frac{1}{5+\frac{1}{5+\cdots}}} \Leftrightarrow x=\frac{1}{5+x}, x=\sqrt{5}-1 \text { (informal) } \tag{1}
\end{equation*}
$$

Every real number admits a more or less unique ctd fraction representative. A real number is rational if and only if it has a finite ctd fraction representative.

Definition.

$$
\begin{equation*}
\left[a_{0}, a_{1}, \cdots, a_{N}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{N}}}}} \tag{2}
\end{equation*}
$$

The $n^{\text {th }}$ convergent is the "truncated" continued fraction $\left[a_{0}, a_{1}, \cdots, a_{N}\right]$.
Theorem 1. Given a rational number x expressed as a binary fraction with L bits, we can find a continued fraction presentation of x in (classical) poly time $O\left(L^{3}\right)$

For example, we have:

$$
\begin{equation*}
\frac{77}{65}=1+\frac{12}{65}=1+\frac{1}{\frac{65}{12}}=1+\frac{1}{5+\frac{5}{12}}=\cdots=1+\frac{1}{5+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}=[1,5,2,2,2] \tag{3}
\end{equation*}
$$

Theorem 2. Let x be any real number, and suppose $\frac{p}{q}$ is a rational number such that

$$
\begin{equation*}
\left\|\frac{p}{q}-x\right\| \leq \frac{1}{q^{2}} \tag{4}
\end{equation*}
$$

Then $\frac{p}{q}$ is a convergent of any continued fraction representation of x
Among all rational approximations to x with a given denominator q, the best ones come from the convergence of the combined fraction representation of x. In particular, if x is a binary fraction. These "best approximations" can be formed in time $O\left(L^{3}\right)$.

2 Shor's Order Finding Algorithm

Definition (Order-Finding problem). The input and output of order-finding problem is:
INPUT: two integrers N (with L bits), x written in binary with $1 \leq x \leq N, \operatorname{gcd}(x, N)=1$.
OUTPUT: r, the order of $x \bmod N$, i.e. smallest $r \geq 1$ such that $x^{r}=1 \bmod N$.
We can define $U_{x}:\left(\mathbb{C}^{2}\right)^{\otimes 2} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes 2}$ by:

$$
U_{x}|y\rangle=\left\{\begin{array}{c}
|x y \bmod N\rangle \tag{5}\\
\text { if } 0 \leq y \leq N-1 \\
|y\rangle \quad \text { else }
\end{array}\right.
$$

We hope to find U_{x} who encodes the fraction $\mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}, y \rightarrow x y$.
We will find order r by applying phase estimation to U_{x} (In following, $t=2 L+1+\left[\log \left(2+\frac{1}{\varepsilon}\right)\right]$ will ensure phase estimation returns best $2 L+1$ bit approximation to a phase with high confidence).

Two issues must be addressed:

1. How to build a quantum circuit for $t-I C U_{x}$?
2. How can we identify and prepare a/an (eigen) state of U_{x} such that running phase estimation on it will return a φ that tells us something useful about r ?

Here are the corresponding answers:

1. Modular exponentiation trick. This is "easy" but it is the step that is most painful part of Shor's algorithm. It will require aqunatum circuit that uses $O\left(L^{3}\right)$ gates.
2. Eigenfunctions of U_{x} are fairly straight forward. Use continued factions to extract r from φ.

2.1 More on modular exponetiation

So what does $I-I C U_{x}$ do?
Write $z=z_{t} z_{t-1} \cdots z_{1}$ and let $y \in \mathbb{Z} / N \mathbb{Z}$, so y is a bit string of length L with $0 \leq y \leq N-1$.

$$
\begin{align*}
t-I C U_{x}|k, y\rangle & =\left|z, U_{x}^{z_{t} t^{t-1}} U_{x}^{z_{t-1} 2^{t-2}} \cdots U_{x}^{z_{1} 2^{0}} y\right\rangle \\
& =\left|z, x^{z_{t} 2^{t-1}} x^{z_{t-1} 2^{t-2}} \cdots x^{z_{1} 2^{0}} y\right\rangle \tag{6}\\
& =\left|z, x^{z} y\right\rangle
\end{align*}
$$

So that $t-I C U_{x}$ multiplies contents of second register (i.e. y) by a power of x with the power determined by contents of first register (i.e. z)

Definition (Modular exponentiation trick). Given x, $N(N$ has L bits, $1<x \leq N)$, one can compute the function

$$
\begin{equation*}
z \leftarrow x^{z} \bmod N \tag{7}
\end{equation*}
$$

Where z has $O(L)$ bits. Classically in time $O\left(L^{3}\right)$
One can dilate a classical Boolean circuit into a unitary circuit in the "usual way" to get a circuit that implements $t-I C U_{x}$.

2.2 More details on eigenstates of U_{x}

$$
\begin{equation*}
\left|u_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \frac{-2 \pi i s k}{r}\left|x^{k}(\bmod N)\right\rangle \tag{8}
\end{equation*}
$$

Then $0 \leq s \leq r-1$,

$$
\begin{align*}
U_{x}\left|u_{>s}\right\rangle & =\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \frac{-2 \pi i s k}{r}\left|x^{k+1}(\bmod N)\right\rangle \tag{9}\\
& =\exp \frac{2 \pi i s}{r}\left|U_{s}\right\rangle
\end{align*}
$$

Where do these formulas come from?
Let $H=\langle x\rangle \leq(\mathbb{Z} / N \mathbb{Z})^{*}$ be the finite cyclic group guaranteed by x (under multiplication). U_{x} is basically the same thing as specifying a representation:

$$
\begin{equation*}
\rho: H \rightarrow U(\mathbb{C}[\mathbb{Z} / N \mathbb{Z}]) \leq\left(\mathbb{C}^{2}\right)^{\otimes 2} \tag{10}
\end{equation*}
$$

Where $\rho^{n}|y\rangle=|h y \bmod N\rangle .{ }^{1}$
Running QPE with U_{x} and $\left|u_{s}\right\rangle$ returns φ, the best $2 L+1$ bit approximation to $\frac{s}{r}$ (with high probability) in particular $\left\|\frac{s}{r}-\varphi\right\| \leq \frac{1}{2 r^{2}}$. Thus, $\frac{s}{r}$ occurs as a convergent of the continued fraction representation of φ. We can find the continued fraction representation of φ in time $O\left(L^{3}\right)$ classically. So, as long as $\operatorname{gcd}(s, r)=1$, we can get r by finding among the demoninators of the convergence of φ.

2.3 Lost remaining problem

Now do we prepare the state $\left|u_{s}\right\rangle$ for some s that is coprime to r ? WE CAN'T!
Because we don't already know r. Instead, we will plug in $|1\rangle=|1 \bmod N\rangle=|0,0, \cdots, 0,1\rangle$ (L bits) to QPF.

$$
\begin{equation*}
|1\rangle=\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle \tag{11}
\end{equation*}
$$

With this φ will be best $2 L+1$ bit approximation to $\frac{s}{r}$ for s, a uniformly randomly chosen value in $0 \leq s \leq r+1$.

[^0]
[^0]: ${ }^{1}\|H\|=r$

