
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Thursday, March 28 - Lecture 11.2
Today’s scribe: Ethan Dickey [Note: not proofread by Eric]

Reading: None.

Agenda:

1. Hidden Subgroup problem

2. Graph isomorphism (and reduction to HSP)

3. HSP for Z/nZ

1 Hidden Subgroup Problem
Remark. Since I (Eric) am looking for new applications of quantum computing, I take the perspective that QFT is, in
some sense, Pontragian Duality.

1.1 Definitions
Definition 1 (Hidden Subgroup). Given a (finite1) group G that we know “explicitly,” a set X that we know “explicitly,”
and oracle access to a function f : G → X which is promised to satisfy the following:

∃ subgroup H ⊆ G such that f (g1) = f (g2) ⇐⇒ g1H = g2H

We say that f “hides H.”

The intuition behind ?? is that f is an H-periodic function on G valued at X .

Definition 2 (Hidden Subgroup Problem). Given a hidden subgroup as in ??, determine H explicitly (i.e. find elements
g1, . . . ,gl ∈ G such that ⟨g1, . . . ,gl⟩= H).

Assuming |G| < inf, we can express the elements of G using bitstrings of length L = O(log|G|). Equipped with
these bitstrings, “to know G explicitly” means we have access to functions Um and in that encode the group multipli-
cation and inversion:

Um : GxG → G

(g1,g2) 7→ g1g2

in : G → G

g 7→ g−1

Ideally, we can find generators of H in time O(polylog|G|)2. Time O(poly|G|) is not interesting because one can
simply iterate through all of the group elements and test for collisions (because H = g−1

1 g2H implies g−1
1 g2 is a group

member).
In particular, this means we can only call the oracle for G O(polylog|G|) times.
To formulate quantum oracle access, we will assume G, f ,X are encoded as follows:

1For this course, we will assume G (a group) is finite.
2Polylog definition

1

https://en.wikipedia.org/wiki/Polylogarithmic_function

1. Elements of G are encoded as bitstrings:

G ⊆ {0,1}L =⇒ CG ≤ (C2)⊗L

Where ≤ is used as subspace notation. We also assume we have a unity:

E : (C2)⊗L → (C2)⊗L

E|0 . . .0⟩= 1√
|G| ∑

g∈G
|g⟩

This E generalizes H⊗L when N = 2L.

2. Similarly, we will assume X ⊆ {0,1}M , M = O(poly(L)).

3. Quantum oracle access to f will mean we have a unitary U f : (C2)⊗L ⊗ (C2)⊗M → (C2)⊗L ⊗ (C2)⊗M such that
U f |g,01 . . .0m⟩= |g, f (g)⟩ (note that we do not care what U f does to other computational basis vectors).

Note that while we don’t need it, having “explicit” quantum oracle access to G means we also have
Um : (C2)⊗L ⊗ (C2)⊗L ⊗ (C2)⊗L → (C2)⊗L ⊗ (C2)⊗L ⊗ (C2)⊗L with
Um|g1,g2,0 . . .0⟩= |g1,g2,g1g2⟩

1.2 What is known about HSP?
HSP provides a framework that captures nearly all examples of exponential quantum advantage decision problems. In
short, there are basically no efficient classical algorithms for HSP on any infinite families of groups that we know of.

Oracle problems:

• Factoring, order finding, Deutsch-Jozsa, Simon, Bernstein-Vazirani, period finding, etc. all reduce to HSP for
abelian groups.

• Ettenger-Høyer-Knill (2004)3: for any HSP (on a finite group), we can solve it using O(polylog|G|) quantum
oracle queries. (Classically, in general, proved that we need at least θ(|G|) queries, even for abelian groups.)
However, we need to perform an exponential amount of quantum postprocessing (unfortunately).

• If H ◁G (and |G| < inf), then Hallgren-Russell-(Ta-Shma) (2000)4 showed that HSP can be solved efficiently
quantumly. This is strongly related to the “Fourier Sampling” problem.

• There are many examples of groups that are “close” to abelian groups that admit efficient quantum solutions.

Some important problems (other than factoring) reduce to non-abelian HSP:

• Certain flavors of the “shortest vector problem” (SVP) reduce to HSP for G = DN a dihedral group (symmetries
of a regular N-gon). (There are lattice-based cryptography algorithms that depend on SVP.)

– There is no known efficient algorithm for dihedral HSP, but there is a subexponential time quantum algo-
rithm due to Kuperberg (2005)5 and Regev (2004)6

• Graph isomorphism reduces to HSP for G = Sn, the symmetric group.
3The quantum query complexity of the hidden subgroup problem is polynomial
4Normal subgroup reconstruction and quantum computation using group representations
5A subexponential-time quantum algorithm for the dihedral hidden subgroup problem
6A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space

2

https://scholar.google.com/scholar?q=The+quantum+query+complexity+of+the+hidden+subgroup+problem+is+polynomial
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C15&q=Normal+subgroup+reconstruction+and+quantum+computation+using+group+represention&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C15&q=A+subexponential-time+quantum+algorithm+for+the+dihedral+hidden+subgroup+problem&btnG=
https://arxiv.org/abs/quant-ph/0406151

2 Graph isomorphism
(Aside: In the past 10 years, it has been shown to be in quasi-polynomial time of O(nlogn) ish7.)

Definition 3 (Graph Isomorphism Problem). Input: Γ1 = (V1,E1), Γ2 = (V2,E2), both are assumed to be connected.
Output: YES if Γ1 ≃ Γ2, NO otherwise.

We will convert each instance of this problem to an instance of HSP with G = Sn with n = |V1|+ |V2|.

• To do this, we will build X and f : G → X that hides a subgroup that “knows” whether or not Γ1 ≃ Γ2.

Proof. Assume V1 = {1, . . . ,n} and V2 = {n+1, . . . ,2n}. Consider G = S2n. We can identify (abstractly) the automor-
phism: Aut(Γ1 ∪Γ2)⊆ S2n. We will build an f that hides this.

This construction is sufficient for 2 reasons:

1. There is an automorphism of their union that swaps the 2:

Γ1 ≃ Γ2 ⇐⇒ ∃α ∈ Aut(Γ1 ∪Γ2) s.t. α(Γ1) = Γ2

2. ∃ such an α ⇐⇒ ∀ generating sets g1, . . . ,gl of Aut(Γ1 ∪Γ2), some gi swaps Γ1 and Γ2.

Let X = all graphs Γ with V (Γ) = {1,2, . . . ,2n} and Γ ≃ Γ1 ∪Γ2.
Define F : S2n → X , σ 7→ σ ∗ (Γ1 ∪Γ2)
Here we note that the size of X doesn’t really matter because we can write down an element of X efficiently.

Proposition 1. F hides Aut(Γ1 ∪Γ2). That is, F(α) = F(τ) ⇐⇒ Aut(Γ1 ∪Γ2) = τAut(Γ1 ∪Γ2)

We do not prove ?? in this proof.

3 HSP for A = Z/nZ
We start with the following definitions: N an integer in binary, elements of A =Z/nZ are represented by 0,1, . . . ,N−1
(in binary).

We are given an oracle f : Z/nZ→ X that satisfies: f (a) = f (b) ⇐⇒ a+H = b+H where H ⊆ Z/nZ.
Since A is cyclic, so are all of its subgroups (including H). Thus, ∃h ∈ A s.t. H = ⟨h⟩, and we want to find this h.

We take a step back to define some notation. Let ω = exp2πi/N, then we can consider FTA as FTA: A → Â =
Hom(A,V (1)) (dual of A) for a 7→ ρa where ρa = A →V (1) for b 7→ ωab.

Next, we define H⊥ = {ρ ∈ A |ρ(h) = 1∀h ∈ H}. In words, H⊥ is the set (group) of irreducible representations
of A that are trivial whne restricted to H. What follows is a generalization of 1b on Homework 7.

Lemma 2. H⊥ determines H. In particular, if we know generators of H⊥, then we can find h in classical polynomial
time.

Lemma 3. The output of the following circuit is a uniformly random chosen element of A such that FTA(y) ∈ H⊥

L L

M M

|0⟩ EA

U f

FTA y ∈ A

|0⟩ ignore

By the same reasoning as for Simon’s problem, only a few applications of this circuit are necessary to find a
generating set of H⊥.

7Graph Isomorphism in Quasipolynomial Time

3

https://dl.acm.org/doi/abs/10.1145/2897518.2897542?casa_token=uqRAefWizNEAAAAA:I9A2KsBHFZpvGCIDAFipTZ1rSH8r_sXma0B10xudRWZO10S2vsZm75FPyF7unc79kbF4jAlfyrAJ

