CS 593/MA 592 - Intro to Quantum Computing Spring 2024
 Thursday, March 28 - Lecture 11.2

Today's scribe: Ethan Dickey [Note: not proofread by Eric]
Reading: None.

Agenda:

1. Hidden Subgroup problem
2. Graph isomorphism (and reduction to HSP)
3. HSP for $\mathbb{Z} / n \mathbb{Z}$

1 Hidden Subgroup Problem

Remark. Since I (Eric) am looking for new applications of quantum computing, I take the perspective that QFT is, in some sense, Pontragian Duality.

1.1 Definitions

Definition 1 (Hidden Subgroup). Given a (finit ${ }^{1}$) group G that we know "explicitly," a set X that we know "explicitly," and oracle access to a function $f: G \rightarrow X$ which is promised to satisfy the following:

$$
\exists \text { subgroup } H \subseteq G \text { such that } f\left(g_{1}\right)=f\left(g_{2}\right) \Longleftrightarrow g_{1} H=g_{2} H
$$

We say that f "hides H."
The intuition behind ?? is that f is an H-periodic function on G valued at X.
Definition 2 (Hidden Subgroup Problem). Given a hidden subgroup as in ??, determine H explicitly (i.e. find elements $g_{1}, \ldots, g_{l} \in G$ such that $\left.\left\langle g_{1}, \ldots, g_{l}\right\rangle=H\right)$.

Assuming $|G|<$ inf, we can express the elements of G using bitstrings of length $L=\mathrm{O}(\log |G|)$. Equipped with these bitstrings, "to know G explicitly" means we have access to functions U_{m} and i_{n} that encode the group multiplication and inversion:

$$
\begin{gathered}
U_{m}: G x G \rightarrow G \\
\quad\left(g_{1}, g_{2}\right) \mapsto g_{1} g_{2} \\
i_{n}: G \rightarrow G \\
g \mapsto g^{-1}
\end{gathered}
$$

Ideally, we can find generators of H in time $\mathrm{O}(\text { poly } \log |G|)^{2}$ Time $\mathrm{O}($ poly $|G|)$ is not interesting because one can simply iterate through all of the group elements and test for collisions (because $H=g_{1}^{-1} g_{2} H$ implies $g_{1}^{-1} g_{2}$ is a group member).

In particular, this means we can only call the oracle for $G \mathrm{O}$ (polylog $|G|$) times.
To formulate quantum oracle access, we will assume G, f, X are encoded as follows:

[^0]1. Elements of G are encoded as bitstrings:

$$
G \subseteq\{0,1\}^{L} \Longrightarrow \mathbb{C} G \leq\left(\mathbb{C}^{2}\right)^{\otimes L}
$$

Where \leq is used as subspace notation. We also assume we have a unity:

$$
\begin{aligned}
E:\left(\mathbb{C}^{2}\right)^{\otimes L} & \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes L} \\
E|0 \ldots 0\rangle & =\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle
\end{aligned}
$$

This E generalizes $H^{\otimes L}$ when $N=2^{L}$.
2. Similarly, we will assume $X \subseteq\{0,1\}^{M}, M=\mathrm{O}(\operatorname{poly}(L))$.
3. Quantum oracle access to f will mean we have a unitary $U_{f}:\left(\mathbb{C}^{2}\right)^{\otimes L} \otimes\left(\mathbb{C}^{2}\right)^{\otimes M} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes L} \otimes\left(\mathbb{C}^{2}\right)^{\otimes M}$ such that $U_{f}\left|g, 0_{1} \ldots 0_{m}\right\rangle=|g, f(g)\rangle$ (note that we do not care what U_{f} does to other computational basis vectors).
Note that while we don't need it, having "explicit" quantum oracle access to G means we also have
$U_{m}:\left(\mathbb{C}^{2}\right)^{\otimes L} \otimes\left(\mathbb{C}^{2}\right)^{\otimes L} \otimes\left(\mathbb{C}^{2}\right)^{\otimes L} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes L} \otimes\left(\mathbb{C}^{2}\right)^{\otimes L} \otimes\left(\mathbb{C}^{2}\right)^{\otimes L}$ with
$U_{m}\left|g_{1}, g_{2}, 0 \ldots 0\right\rangle=\left|g_{1}, g_{2}, g_{1} g_{2}\right\rangle$

1.2 What is known about HSP?

HSP provides a framework that captures nearly all examples of exponential quantum advantage decision problems. In short, there are basically no efficient classical algorithms for HSP on any infinite families of groups that we know of.

Oracle problems:

- Factoring, order finding, Deutsch-Jozsa, Simon, Bernstein-Vazirani, period finding, etc. all reduce to HSP for abelian groups.
- Ettenger-Høyer-Knill (2004 $]^{3}$ for any HSP (on a finite group), we can solve it using O (polylog $|G|$) quantum oracle queries. (Classically, in general, proved that we need at least $\theta(|G|)$ queries, even for abelian groups.) However, we need to perform an exponential amount of quantum postprocessing (unfortunately).
- If $H \triangleleft G$ (and $|G|<$ inf), then Hallgren-Russell-(Ta-Shma) (2000) ${ }^{4}$ showed that HSP can be solved efficiently quantumly. This is strongly related to the "Fourier Sampling" problem.
- There are many examples of groups that are "close" to abelian groups that admit efficient quantum solutions.

Some important problems (other than factoring) reduce to non-abelian HSP:

- Certain flavors of the "shortest vector problem" (SVP) reduce to HSP for $G=D_{N}$ a dihedral group (symmetries of a regular N -gon). (There are lattice-based cryptography algorithms that depend on SVP.)
- There is no known efficient algorithm for dihedral HSP, but there is a subexponential time quantum algorithm due to Kuperberg (2005) ${ }^{5}$ and Regev (2004) ${ }^{6}$
- Graph isomorphism reduces to HSP for $G=S_{n}$, the symmetric group.

[^1]
2 Graph isomorphism

(Aside: In the past 10 years, it has been shown to be in quasi-polynomial time of $\mathrm{O}\left(n^{\log n}\right)$ ish ${ }^{77}$)
Definition 3 (Graph Isomorphism Problem). Input: $\Gamma_{1}=\left(V_{1}, E_{1}\right), \Gamma_{2}=\left(V_{2}, E_{2}\right)$, both are assumed to be connected. Output: YES if $\Gamma_{1} \simeq \Gamma_{2}, N O$ otherwise.

We will convert each instance of this problem to an instance of HSP with $G=S_{n}$ with $n=\left|V_{1}\right|+\left|V_{2}\right|$.

- To do this, we will build X and $f: G \rightarrow X$ that hides a subgroup that "knows" whether or not $\Gamma_{1} \simeq \Gamma_{2}$.

Proof. Assume $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\{n+1, \ldots, 2 n\}$. Consider $G=S_{2 n}$. We can identify (abstractly) the automorphism: $\operatorname{Aut}\left(\Gamma_{1} \cup \Gamma_{2}\right) \subseteq S_{2 n}$. We will build an f that hides this.

This construction is sufficient for 2 reasons:

1. There is an automorphism of their union that swaps the 2 :

$$
\Gamma_{1} \simeq \Gamma_{2} \Longleftrightarrow \exists \alpha \in \operatorname{Aut}\left(\Gamma_{1} \cup \Gamma_{2}\right) \text { s.t. } \alpha\left(\Gamma_{1}\right)=\Gamma_{2}
$$

2. \exists such an $\alpha \Longleftrightarrow \forall$ generating sets g_{1}, \ldots, g_{l} of $A u t\left(\Gamma_{1} \cup \Gamma_{2}\right)$, some g_{i} swaps Γ_{1} and Γ_{2}.

Let $X=$ all graphs Γ with $V(\Gamma)=\{1,2, \ldots, 2 n\}$ and $\Gamma \simeq \Gamma_{1} \cup \Gamma_{2}$.
Define $F: S_{2 n} \rightarrow X, \sigma \mapsto \sigma *\left(\Gamma_{1} \cup \Gamma_{2}\right)$
Here we note that the size of X doesn't really matter because we can write down an element of X efficiently.
Proposition 1. F hides Aut $\left(\Gamma_{1} \cup \Gamma_{2}\right)$. That is, $F(\alpha)=F(\tau) \Longleftrightarrow \operatorname{Aut}\left(\Gamma_{1} \cup \Gamma_{2}\right)=\tau \operatorname{Aut}\left(\Gamma_{1} \cup \Gamma_{2}\right)$
We do not prove ?? in this proof.

3 HSP for $\mathbf{A}=\mathbb{Z} / n \mathbb{Z}$

We start with the following definitions: N an integer in binary, elements of $A=\mathbb{Z} / n \mathbb{Z}$ are represented by $0,1, \ldots, N-1$ (in binary).

We are given an oracle $f: \mathbb{Z} / n \mathbb{Z} \rightarrow X$ that satisfies: $f(a)=f(b) \Longleftrightarrow a+H=b+H$ where $H \subseteq \mathbb{Z} / n \mathbb{Z}$.
Since A is cyclic, so are all of its subgroups (including H). Thus, $\exists h \in A$ s.t. $H=\langle h\rangle$, and we want to find this h.
We take a step back to define some notation. Let $\omega=\exp 2 \pi i / N$, then we can consider FT_{A} as $\mathrm{FT}_{A}: A \rightarrow \hat{A}=$ $\operatorname{Hom}(A, V(1))$ (dual of A) for $a \mapsto \rho_{a}$ where $\rho_{a}=A \rightarrow V(1)$ for $b \mapsto \omega^{a b}$.

Next, we define $H^{\perp}=\{\rho \in A \mid \rho(h)=1 \forall h \in H\}$. In words, H^{\perp} is the set (group) of irreducible representations of A that are trivial whne restricted to H. What follows is a generalization of 1 b on Homework 7.

Lemma 2. H^{\perp} determines H. In particular, if we know generators of H^{\perp}, then we can find h in classical polynomial time.

Lemma 3. The output of the following circuit is a uniformly random chosen element of A such that $F T_{A}(y) \in H^{\perp}$

By the same reasoning as for Simon's problem, only a few applications of this circuit are necessary to find a generating set of H^{\perp}.
$\sqrt{\text { Graph Isomorphism in Quasipolynomial Time }}$

[^0]: ${ }^{1}$ For this course, we will assume G (a group) is finite.
 ${ }^{2}$ Polylog definition

[^1]: ${ }^{3}$ The quantum query complexity of the hidden subgroup problem is polynomial
 ${ }^{4}$ Normal subgroup reconstruction and quantum computation using group representations
 5 A subexponential-time quantum algorithm for the dihedral hidden subgroup problem
 6 A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space

