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Agenda:

1. Some generalization codes

2. Stabilizer codes

3. QEC conditions for Pauli stabilizer codes

1 Generalities

A quantum error correction (QEC) code on n qubits is a subspace C ⊆ (C2)⊗n. The length of C is n. If

dimC = D, we say C is a D-dimensional code. If dimC = 2ℓ, we say C encodes ℓ logical qubits. The rate

of C is D/2n or ℓ/n depending on context. In general, we’d like to have codes with large D.

Consider an error operation E on (C2)⊗n with errors (i.e. operative elements) {Ei}. Let S ⊆ [n] :=

{1, 2, . . . , n} be a subset of our qubits. We say Ei is supported in S if there exists E′
i on the qubits in S

such that Ei = E′
i ⊗ id[n]−S . The support suppEi ⊆ [n] of Ei is the smallest S such that Ei is supported

in S. The support of E is supp E = maxi | suppEi| ∈ N. Note that this definition depends on the choice of

Ei. The distance d of C is

d := min
undetectable error operators E

supp E ≈ 2 min
uncorrectable error operators E

supp E

(the last formula is one too large when n is odd). An ((n,D, d)) (resp. [[n, ℓ, d]]) QEC code is any

D-dimensional (resp. 2ℓ-dimensional) code on n qubits with distance d.

These statistics, especially d, look horribly difficult to compute. But they can be discretized, so we

only have to minimize or maximize over finitely many things. We’ll explain this shortly for Pauli stabilizer

codes. The biggest recent breakthrough is that there exist good LDPC [[n,Θ(n),Θ(n)]] codes.

2 Stabilizer codes

A stabilizer set is a set of operators S ⊆ B((C2)⊗n). The elements of S are called stabilizers. The associated

stabilizer code is

CS =
{
|ψ⟩ ∈ (C2)⊗n | g |ψ⟩ = |ψ⟩ for all g ∈ S

}
=

⋂
g∈S

{+1-eigenspace of g}.

At this level of generality, it seems pretty hopeless to compute the distance of CS .

A Pauli error on (C2)⊗n is any operator E : (C2)⊗n → (C2)⊗n that can be formed by composing X,

Y , Z, ±I, and ±iI on the n qubits. For example, −iX ⊗ I ⊗ (Y Z) is a Pauli error on 3 qubits. Let Gn be

the set of all Pauli errors on n qubits.

Lemma 1. Gn is a finite group of order |Gn| = 4n+1.

Proof. Recall that X = ( 0 1
1 0 ), Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
. Since X, Y , and Z are invertible, it’s clear

that Gn is a group. Their multiplication table is
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X Y Z

X I iZ −iY
Y −iZ I iX

Z iY −iX I

For example, (−iX ⊗ Y ⊗Z)(−Y ⊗ I ⊗Z) = (−Z ⊗ Y ⊗ I). Thus, we can simplify any composition of X,

Y , and Z operators into a single operator. Each qubit has 4 choices of operator (X, Y , Z, and I), and we

have 4 choices of scalar (±1 and ±i) which gives us the order of the group.

From last class, a code C ⊆ (C2)⊗n has distance at least d if and only if it can detect all Pauli errors

of support at most d− 1. Let E be an error operation with errors

{Ei} = {g ∈ Gn | g has support at most d− 1}.

The idea is to study Pauli errors on stabilizer codes whose stabilizers are also Pauli errors. A Pauli stabilizer

code C ⊆ (C2)⊗n is a stabilizer code whose stabilizers are Pauli errors, i.e. C = CS for some S ⊆ Gn.

Pauli stabilizer codes are also sometimes called additive codes.

Example 2. If S = {X ⊗X ⊗ I, I ⊗X ⊗X}, then CS is the 3-qubit bit flip code. If

S = {Z ⊗ Z ⊗ I, Z ⊗ I ⊗ Z, I ⊗ Z ⊗ Z},

then CS is the 3-qubit phase flip code. If

S =
{
Zi ⊗ Zi+1 ⊗ id{1,...,i−1,i+2,...,9} | 1 ≤ i ≤ 8

}
∪

{
6⊗

i=1

Xi ⊗ id{7,8,9}, id{1,2,3} ⊗
9⊗

i=4

Xi

}
,

then CS is Shor’s 9-qubit code.

Notice that if S ⊆ Gn and ⟨S⟩ is the subgroup of Gn generated by S, then CS = C⟨S⟩. Thus, from this

point on we’ll assume S is a subgroup of Gn.

Lemma 3. CS ̸= {0} if and only if −I /∈ ⟨S⟩.

The forward implication is immediate, and we’ll prove the reverse implication on Tuesday.

Let S ⊆ Gn be a Pauli stabilizer group, CS ⊆ (C2)⊗n the corresponding stabilizer code, and let P be

the projection of (C2)⊗n onto CS . The centralizer of S in Gn is Z(S) = {g ∈ Gn | gs = sg for all s ∈ S}.

Claim 4. Let E be an error operation whose errors {Ei} are Pauli errors. Suppose that for all j, k either

E∗
jEk ∈ S or E∗

jEk /∈ Z(S). Then E is correctable on CS.

Proof. We need to show there exists a Hermitian matrix (αjk) such that PE∗
jEkP = αjkP for all j, k. If

E∗
jEk ∈ S then αjk = 1. Otherwise E∗

jEk /∈ Z(S), so there exists s ∈ S such that E∗
jEk doesn’t commute

with s. One can check that E∗
jEk takes any |ψ⟩ ∈ CS to a vector in the −1-eigenspace of s. Thus, αjk = 0.

Clearly (αjk) is symmetric and hence Hermitian since it has only 0 and 1 entries.
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